File size: 10,794 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
from abc import ABC, abstractmethod
from multiprocessing import cpu_count

"""
This registry is for automatically downloading and extracting datasets.

To register a class you need to inherit the DataDownloader class, and provide name and url attributes, and (optionally)
the number of documents.

When done, add it to the DATA_DOWNLOADERS dict. The function process_data runs the pre-processing for the selected
dataset.
"""

GPT2_VOCAB_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json"
GPT2_MERGE_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt"


class DataDownloader(ABC):
    """Dataset registry class to automatically download / extract datasets"""

    def __init__(
        self,
        tokenizer_type=None,
        merge_file=None,
        vocab_file=None,
        data_dir=None,
        force_redownload=None,
        num_workers=None,
    ):
        if tokenizer_type is None:
            tokenizer_type = "GPT2BPETokenizer"
        if data_dir is None:
            data_dir = os.environ.get("DATA_DIR", "./data")
        if merge_file is None:
            merge_file = f"{data_dir}/gpt2-merges.txt"
        if force_redownload is None:
            force_redownload = False
        if vocab_file is None:
            if tokenizer_type == "GPT2BPETokenizer":
                vocab_file = f"{data_dir}/gpt2-vocab.json"
            elif tokenizer_type == "HFGPT2Tokenizer":
                vocab_file = "gpt2"
            elif tokenizer_type == "CharLevelTokenizer":
                pass
            else:
                assert vocab_file is not None, "No vocab file provided"
        if num_workers is None:
            num_workers = cpu_count()
        self._tokenizer_type = tokenizer_type
        self._merge_file = merge_file
        self._vocab_file = vocab_file
        self._data_dir = data_dir
        self._force_redownload = force_redownload
        self._num_workers = num_workers

    @property
    def base_dir(self):
        """base data directory"""
        return self._data_dir

    @property
    @abstractmethod
    def name(self):
        """name of dataset"""
        pass

    @property
    @abstractmethod
    def urls(self):
        """URLs from which to download dataset"""
        pass

    @property
    def tokenizer_type(self):
        """tokenizer type to use when tokenizing data"""
        return self._tokenizer_type

    @property
    def merge_file(self):
        """Merge file for tokenizer"""
        return self._merge_file

    @property
    def vocab_file(self):
        """Vocab file for tokenizer"""
        return self._vocab_file

    @property
    def num_workers(self):
        """Number of workers to use in preprocessing"""
        return self._num_workers

    @property
    def num_docs(self):
        """Number of documents in the dataset (if known)"""
        return None

    @property
    def ftfy(self):
        """Use ftfy (https://github.com/LuminosoInsight/python-ftfy) to fix text encodings"""
        return False

    def exists(self):
        """Checks if the dataset is present"""
        return os.path.isdir(f"{self.base_dir}/{self.name}")

    def download(self):
        """downloads dataset"""
        os.makedirs(os.path.join(self.base_dir, self.name), exist_ok=True)
        for url in self.urls:
            try:
                os_cmd = f"wget {url} -O {os.path.join(self.base_dir, self.name, os.path.basename(url))}"
                if os.system(os_cmd) != 0:
                    raise Exception(
                        f"Cannot download file at URL {url}: server may be down"
                    )
            except Exception as e:
                raise Exception(f"Download error: {e}")

    def tokenize(self):
        """tokenizes dataset"""
        parent_folder = os.path.join(self.base_dir, self.name)
        jsonl_filepath = ",".join(
            [os.path.join(parent_folder, os.path.basename(url)) for url in self.urls]
        )

        cmd = f"python tools/datasets/preprocess_data.py \
            --input {jsonl_filepath} \
            --output-prefix {parent_folder}/{self.name} \
            --vocab {self.vocab_file} \
            --dataset-impl mmap \
            --tokenizer-type {self.tokenizer_type} \
            --merge-file {self.merge_file} \
            --append-eod \
            --workers {self.num_workers} "

        if self.num_docs is not None:
            cmd += f"--num-docs {self.num_docs} "

        if self.ftfy:
            cmd += f"--ftfy "

        os.system(cmd)

    def prepare(self):
        if self._force_redownload:
            self.download()
        else:
            if not self.exists():
                self.download()

        self.tokenize()


class Enron(DataDownloader):
    name = "enron"
    urls = ["http://eaidata.bmk.sh/data/enron_emails.jsonl.zst"]
    num_docs = 517401


class PileSubset(DataDownloader):
    name = "pile_00"
    urls = ["https://the-eye.eu/public/AI/pile/train/00.jsonl.zst"]


class Pile(DataDownloader):
    name = "pile"
    urls = [
        f"https://the-eye.eu/public/AI/pile/train/{i:02}.jsonl.zst" for i in range(30)
    ]


class Github(DataDownloader):
    name = "github"
    urls = ["http://eaidata.bmk.sh/data/github_small.jsonl.zst"]


class ArXiv(DataDownloader):
    name = "arxiv"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/2020-09-08-arxiv-extracts-nofallback-until-2007-068.tar.gz"
    ]


class EuroParl(DataDownloader):
    name = "europarl"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/EuroParliamentProceedings_1996_2011.jsonl.zst"
    ]


class FreeLaw(DataDownloader):
    name = "freelaw"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/FreeLaw_Opinions.jsonl.zst"
    ]


class NiH(DataDownloader):
    name = "nih"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/NIH_ExPORTER_awarded_grant_text.jsonl.zst"
    ]


class PubMed(DataDownloader):
    name = "pubmed"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/PMC_extracts.tar.gz"
    ]


class Books1(DataDownloader):
    name = "books1"
    urls = ["https://the-eye.eu/public/AI/pile_preliminary_components/books1.tar.gz"]


class Books3(DataDownloader):
    name = "books3"
    urls = ["https://the-eye.eu/public/AI/pile_preliminary_components/books3.tar.gz"]


class HackerNews(DataDownloader):
    name = "hackernews"
    urls = ["https://the-eye.eu/public/AI/pile_preliminary_components/hn.tar.gz"]
    num_docs = 373000


class OpenWebText2(DataDownloader):
    name = "openwebtext2"
    urls = [
        "https://huggingface.co/datasets/segyges/OpenWebText2/resolve/main/openwebtext2.jsonl.zst.tar"
    ]
    num_docs = 17103000


class StackExchange(DataDownloader):
    name = "stackexchange"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/stackexchange_dataset.tar"
    ]


class UbuntuIRC(DataDownloader):
    name = "ubuntu_irc"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/ubuntu_irc_until_2020_9_1.jsonl.zst"
    ]


class YoutubeSubtitles(DataDownloader):
    name = "youtube_subtitles"
    urls = [
        "https://the-eye.eu/public/AI/pile_preliminary_components/yt_subs.jsonl.zst"
    ]


class C4(DataDownloader):
    name = "c4"
    urls = [
        f"https://the-eye.eu/eleuther_staging/c4/en/c4-train.{i:05}-of-01024.json.gz"
        for i in range(1024)
    ]


class C4OpenWebText(DataDownloader):
    name = "c4_openwebtext"
    urls = [
        f"https://the-eye.eu/eleuther_staging/c4/realnewslike/c4-train.{i:05}-of-00512.json.gz"
        for i in range(512)
    ]


class Enwik8(DataDownloader):
    name = "enwik8"
    urls = ["http://mattmahoney.net/dc/enwik8.zip"]


def maybe_download_gpt2_tokenizer_data(tokenizer_type, data_dir):
    if tokenizer_type is None or tokenizer_type == "GPT2BPETokenizer":
        GPT2_VOCAB_FP = f"{data_dir}//gpt2-vocab.json"
        GPT2_MERGE_FP = f"{data_dir}/gpt2-merges.txt"
        if not os.path.isfile(GPT2_VOCAB_FP):
            os.system(f"wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}")
        if not os.path.isfile(GPT2_MERGE_FP):
            os.system(f"wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}")


DATA_DOWNLOADERS = {
    "pass": "pass",
    "enron": Enron,
    "pile_subset": PileSubset,
    "pile": Pile,
    "github": Github,
    "arxiv": ArXiv,
    "europarl": EuroParl,
    "freelaw": FreeLaw,
    "nih": NiH,
    "pubmed": PubMed,
    "books1": Books1,
    "books3": Books3,
    "hackernews": HackerNews,
    "openwebtext2": OpenWebText2,
    "stackexchange": StackExchange,
    "ubuntu_irc": UbuntuIRC,
    "youtube_subtitles": YoutubeSubtitles,
    "c4": C4,
    "c4_openwebtext": C4OpenWebText,
    "enwik8": Enwik8,
}


def prepare_dataset(
    dataset_name: str,
    tokenizer_type: str = None,
    data_dir: str = None,
    vocab_file: str = None,
    merge_file: str = None,
    force_redownload: bool = None,
    num_workers: int = None,
):
    """
    Downloads + tokenizes a dataset in the registry (dataset_name) and saves output .npy files to data_dir.
    """
    if data_dir is None:
        data_dir = os.environ.get("DATA_DIR", "./data")
    os.makedirs(data_dir, exist_ok=True)
    maybe_download_gpt2_tokenizer_data(tokenizer_type, data_dir)
    DownloaderClass = DATA_DOWNLOADERS.get(dataset_name.lower(), None)
    if DownloaderClass is None:
        raise NotImplementedError(
            f'Dataset "{dataset_name}" not recognized - please choose from {list(DATA_DOWNLOADERS.keys())}'
        )
    elif DownloaderClass == "pass":
        # pass on building dataset (for unit tests)
        pass
    else:
        num_workers = 1 if dataset_name == "enwik8" else num_workers
        d = DownloaderClass(
            tokenizer_type=tokenizer_type,
            vocab_file=vocab_file,
            merge_file=merge_file,
            data_dir=data_dir,
            force_redownload=force_redownload,
            num_workers=num_workers,
        )
        d.prepare()