File size: 7,737 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Processing data for pretraining."""

import argparse
import multiprocessing
import os
import sys

import lm_dataformat as lmd
import numpy as np

sys.path.append(
    os.path.abspath(
        os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir)
    )
)
import time
import tqdm
import torch
import ftfy

from megatron.tokenizer import build_tokenizer
from megatron.data import indexed_dataset
from threading import Semaphore


class Encoder(object):
    def __init__(self, args):
        self.args = args

    def initializer(self):
        # Use Encoder class as a container for global data
        Encoder.tokenizer = build_tokenizer(self.args)

    def encode(self, text):
        if self.args.ftfy:
            text = ftfy.fix_text(text)
        ids = {}
        for key in self.args.jsonl_keys:
            doc_ids = []
            text_ids = Encoder.tokenizer.tokenize(text)
            if len(text_ids) > 0:
                doc_ids.append(text_ids)
            if self.args.append_eod:
                doc_ids[-1].append(Encoder.tokenizer.eod)
            ids[key] = doc_ids
        return ids, len(text)


def get_args(input_args=None):
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group(title="input data")
    group.add_argument(
        "--input",
        type=str,
        required=True,
        help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
        "list",
    )
    group.add_argument(
        "--jsonl-keys",
        nargs="+",
        default=["text"],
        help="space separate listed of keys to extract from jsonl. Default: text",
    )
    group.add_argument(
        "--num-docs",
        default=None,
        help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
        type=int,
    )
    group = parser.add_argument_group(title="tokenizer")
    group.add_argument(
        "--tokenizer-type",
        type=str,
        required=True,
        choices=[
            "HFGPT2Tokenizer",
            "HFTokenizer",
            "GPT2BPETokenizer",
            "CharLevelTokenizer",
            "TiktokenTokenizer",
            "SPMTokenizer",
        ],
        help="What type of tokenizer to use.",
    )
    group.add_argument(
        "--vocab-file", type=str, default=None, help="Path to the vocab file"
    )
    group.add_argument(
        "--merge-file",
        type=str,
        default=None,
        help="Path to the BPE merge file (if necessary).",
    )
    group.add_argument(
        "--append-eod",
        action="store_true",
        help="Append an <eod> token to the end of a document.",
    )
    group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
    group = parser.add_argument_group(title="output data")
    group.add_argument(
        "--output-prefix",
        type=str,
        required=True,
        help="Path to binary output file without suffix",
    )
    group.add_argument(
        "--dataset-impl",
        type=str,
        default="mmap",
        choices=["lazy", "cached", "mmap"],
        help="Dataset implementation to use. Default: mmap",
    )

    group = parser.add_argument_group(title="runtime")
    group.add_argument(
        "--workers", type=int, default=1, help="Number of worker processes to launch"
    )
    group.add_argument(
        "--log-interval",
        type=int,
        default=100,
        help="Interval between progress updates",
    )
    args = parser.parse_args(input_args)
    args.keep_empty = False

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.model_parallel_size = 1

    return args


def yield_from_files(fnames: list, semaphore):
    """
    Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
    other compressed formats. Also filters out empty documents.

    :param fnames: list of filenames
    """

    def yielder(fname, semaphore):
        for f in filter(lambda x: x, lmd.Reader(fname).stream_data()):
            semaphore.acquire()
            yield f

    for fname in fnames:
        semaphore.acquire()

        yield from yielder(fname, semaphore)


def main(input_args=None):
    args = get_args(input_args)
    encoder = Encoder(args)
    tokenizer = build_tokenizer(args)
    print(f"Vocab size: {tokenizer.vocab_size}")
    print(f"Output prefix: {args.output_prefix}")

    # build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
    # hence building up memory
    semaphore = Semaphore(10000 + args.workers)

    # use multiprocessing to iterate over input documents
    fin = yield_from_files(args.input.split(","), semaphore)

    if args.workers > 1:
        pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
        encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
    else:
        encoder.initializer()
        encoded_docs = (encoder.encode(doc) for doc in fin)

    # make a dataset builder for each key in args.jsonl_keys
    # each key will output to a different file beginning with args.output_prefix
    output_bin_files = {}
    output_idx_files = {}
    builders = {}
    for key in args.jsonl_keys:
        output_bin_files[key] = "{}_{}_{}.bin".format(
            args.output_prefix, key, "document"
        )
        output_idx_files[key] = "{}_{}_{}.idx".format(
            args.output_prefix, key, "document"
        )
        builders[key] = indexed_dataset.make_builder(
            output_bin_files[key],
            impl=args.dataset_impl,
            vocab_size=tokenizer.vocab_size,
        )

    # actually do tokenization
    proc_start = time.time()
    total_bytes_processed = 0
    pbar = tqdm.tqdm()
    for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
        total_bytes_processed += bytes_processed

        # release semaphore so `yield_from_files` can add another file to the buffer
        semaphore.release()

        # add each tokenized document / sentence
        for key, sentences in doc.items():
            for sentence in sentences:
                builders[key].add_item(np.array(sentence, dtype=builders[key].dtype))
            # separate with eos token
            builders[key].end_document()

        # log progress
        if i % args.log_interval == 0:
            current = time.time()
            elapsed = current - proc_start
            mbs = total_bytes_processed / elapsed / 1024 / 1024
            pbar.set_description(
                f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed :.2f} docs/s, {mbs:.2f} MB/s)."
            )
            if i != 0:
                pbar.update(args.log_interval)

    # save output file
    for key in args.jsonl_keys:
        builders[key].finalize(output_idx_files[key])


if __name__ == "__main__":
    main()