File size: 14,827 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A script for processing a dataset such that chat templates are utilized in the creation of the data.
These are then used to perform instruction/chat model finetunes (for example, finetuning a model on only the assistant
portions of a chatml dataset).
This follows the same output format as 'preprocess_data_with_mask.py' but using chat templates to generate the data.
This way we can support multiturn chat data in the finetuning process. instead of relying on a single turn of data.
To run this script, first edit `tools/datasets/corpora.py` such that the command to call
`tools/datasets/preprocess_data_with_chat_template.py` is as follows:
```
cmd = f"python tools/datasets/preprocess_data_with_with_chat_template.py \
--input {jsonl_filepath} \
--output-prefix {parent_folder}/{self.name} \
--tokenizer-path {hf-tokenizer} \
--jsonl-keys {jsonl_keys} \
--dataset-impl mmap \
--workers {self.num_workers} "
if self.only_last:
cmd += f"--only-last "
if self.no_mask:
cmd += f"--no-mask "
```
Then, specify
```
"train_data_paths": ["/path/to/dataset/name_text_document"],
"label_data_paths": ["/path/to/dataset/name_label_document"]
```
in your YML config. This will then allow for finetuning on the data with loss masks set appropriately.
"""
import argparse
import multiprocessing
import os
import sys
import lm_dataformat as lmd
import numpy as np
sys.path.append(
os.path.abspath(
os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir)
)
)
import time
import tqdm
import jsonlines
from megatron.data import indexed_dataset
from threading import Semaphore
from typing import List, Dict, Tuple
from transformers import AutoTokenizer, PreTrainedTokenizer
def build_chat(
chat: List[Dict[str, str]],
generation_role: str,
apply_mask: bool,
tokenizer: PreTrainedTokenizer,
only_last_turn: bool = False,
for_rm: bool = False,
) -> Tuple[List[int], List[int]]:
"""
Build a chat from a list of dictionaries. Each dictionary should have a "role" and "content" key, this follows the
Chat Template from https://huggingface.co/docs/transformers/main/en/chat_templating
:param chat: A list of dictionaries with "role" and "content" keys
:param generation_role: The role of the model generating the chat, usually "assistant"
:param apply_mask: Whether to apply a loss mask to the chat, if False, all tokens will be included in the loss
:param tokenizer: A HF tokenizer
:param only_last_turn: Whether to only include the last turn in the chat, needed for some fine-tuning tasks
"""
tokens = []
mask = []
if apply_mask is False:
tokens = tokenizer.apply_chat_template(chat)
mask = tokens
return tokens, mask
elif for_rm:
tokens = tokenizer.apply_chat_template(chat)
mask = [-100] * len(tokens)
if tokenizer.eos_token_id is not None:
# since this is processed in a causal format (input[:-1], mask[1:], we need to put two here...
mask.append(-100)
tokens.append(tokenizer.eos_token_id)
mask.append(tokenizer.eos_token_id)
tokens.append(tokenizer.eos_token_id)
else:
raise ValueError(
"Tokenizer does not have an EOS token, unable to determine good mask, please edit and make your own."
)
return tokens, mask
for i, turn in enumerate(chat):
add_gen = (
False if i == len(chat) - 1 else chat[i + 1]["role"] == generation_role
)
chat_tokens = tokenizer.apply_chat_template(
chat[: i + 1], add_generation_prompt=add_gen
)[len(tokens) :]
# remove previous stuff...
tokens.extend(chat_tokens)
if only_last_turn and (i != len(chat) - 1):
mask.extend([-100] * len(chat_tokens))
elif apply_mask and (turn["role"] != generation_role):
mask.extend([-100] * len(chat_tokens))
else:
mask.extend(chat_tokens)
if tokenizer.eos_token_id is not None:
mask.append(tokenizer.eos_token_id if mask[-1] != -100 else -100)
tokens.append(tokenizer.eos_token_id)
return tokens, mask
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = AutoTokenizer.from_pretrained(self.args.tokenizer_path)
def encode(self, text):
ids = {}
for key in self.args.jsonl_keys:
text_ids, label_ids = build_chat(
text[key],
self.args.generation_role,
not self.args.no_mask,
Encoder.tokenizer,
self.args.only_last,
self.args.for_rm,
)
if self.args.reward_key is not None:
reward = text[self.args.reward_key]
if self.args.binary_reward:
reward = [1] if reward else [-1]
elif type(reward) == float:
reward = [reward]
ids[key] = (text_ids, label_ids, reward)
else:
ids[key] = (text_ids, label_ids, None)
return ids, len(text)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title="input data")
group.add_argument(
"--input",
type=str,
required=True,
help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
"list",
)
group.add_argument(
"--jsonl-keys",
nargs="+",
default=["conversation"],
help="space separate listed of keys to extract from jsonl. Default: text",
)
group.add_argument(
"--no-mask",
help="If set, this will not mask any tokens in the input data.",
action="store_true",
)
group.add_argument(
"--for-rm",
help="If set, this will mask everything except the last token in the chat.",
action="store_true",
)
group.add_argument(
"--generation-role",
type=str,
default="assistant",
help="The role of the model generating the chat, usually 'assistant'. Default: assistant",
)
group.add_argument(
"--only-last",
help="If set, this will mask everything except the last turn in the chat.",
action="store_true",
)
group.add_argument(
"--reward-key",
type=str,
default=None,
help="Optional: key to use for reward data in the input data.",
)
group.add_argument(
"--binary-reward",
help="If set, this will treat the reward data as a boolean.",
action="store_true",
)
group.add_argument(
"--num-docs",
default=None,
help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
type=int,
)
group = parser.add_argument_group(title="tokenizer")
group.add_argument(
"--tokenizer-path",
type=str,
required=True,
help="Path to HF Tokenizer.",
)
group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
group = parser.add_argument_group(title="output data")
group.add_argument(
"--output-prefix",
type=str,
required=True,
help="Path to binary output file without suffix",
)
group.add_argument(
"--dataset-impl",
type=str,
default="mmap",
choices=["lazy", "cached", "mmap"],
help="Dataset implementation to use. Default: mmap",
)
group = parser.add_argument_group(title="runtime")
group.add_argument(
"--workers", type=int, default=1, help="Number of worker processes to launch"
)
group.add_argument(
"--log-interval",
type=int,
default=100,
help="Interval between progress updates",
)
args = parser.parse_args()
args.keep_empty = False
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.model_parallel_size = 1
return args
def yield_from_files(fnames: list, semaphore):
"""
Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
other compressed formats. Also filters out empty documents.
:param fnames: list of filenames
"""
def yielder(fname, semaphore):
with open(fname, encoding="utf-8") as f:
reader = jsonlines.Reader(f)
for f in reader:
semaphore.acquire()
yield f
for fname in fnames:
semaphore.acquire()
yield from yielder(fname, semaphore)
def main():
args = get_args()
encoder = Encoder(args)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
# build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
# hence building up memory
semaphore = Semaphore(10000 + args.workers)
# use multiprocessing to iterate over input documents
fin = yield_from_files(args.input.split(","), semaphore)
if args.workers > 1:
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
else:
encoder.initializer()
encoded_docs = (encoder.encode(doc) for doc in fin)
# make a dataset builder for each key in args.jsonl_keys
# each key will output to a different file beginning with args.output_prefix
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.jsonl_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(
args.output_prefix, key, "document"
)
output_idx_files[key] = "{}_{}_{}.idx".format(
args.output_prefix, key, "document"
)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size,
)
builders[key]._dtype = np.int32
if not args.no_mask:
assert (
key + "_label" not in args.jsonl_keys
), "label should not be included as it will be generated according to the mask."
label_key = key + "_label"
output_bin_files[label_key] = "{}_{}_{}.bin".format(
args.output_prefix, label_key, "document"
)
output_idx_files[label_key] = "{}_{}_{}.idx".format(
args.output_prefix, label_key, "document"
)
builders[label_key] = indexed_dataset.make_builder(
output_bin_files[label_key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size,
)
builders[label_key]._dtype = np.int32
if args.reward_key is not None:
assert (
key + "_reward" not in args.jsonl_keys
), "reward should not be included as it will be generated from the data."
reward_key = key + "_reward"
output_bin_files[reward_key] = "{}_{}_{}.bin".format(
args.output_prefix, reward_key, "document"
)
output_idx_files[reward_key] = "{}_{}_{}.idx".format(
args.output_prefix, reward_key, "document"
)
builders[reward_key] = indexed_dataset.make_builder(
output_bin_files[reward_key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size,
)
builders[reward_key]._dtype = np.int32
# actually do tokenization
proc_start = time.time()
total_bytes_processed = 0
pbar = tqdm.tqdm()
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
# release semaphore so `yield_from_files` can add another file to the buffer
semaphore.release()
# add each tokenized document / sentence
for key, conv in doc.items():
tokens = conv[0]
token_mask = conv[1]
reward = conv[2]
builders[key].add_item(np.array(tokens, dtype=builders[key].dtype))
builders[key + "_label"].add_item(
np.array(token_mask, dtype=builders[key + "_label"].dtype)
)
if args.reward_key is not None:
builders[key + "_reward"].add_item(
np.array(reward, dtype=builders[key + "_reward"].dtype)
)
# add indx...
builders[key].end_document()
builders[key + "_label"].end_document()
if args.reward_key is not None:
builders[key + "_reward"].end_document()
if i == 1:
print("key: ", key)
print("tokens: ", tokens)
print("token_mask: ", token_mask)
print("Reward: ", reward)
# log progress
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
pbar.set_description(
f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed} docs/s, {mbs} MB/s)."
)
if i != 0:
pbar.update(args.log_interval)
# save output file
update_keys = args.jsonl_keys
for key in update_keys:
builders[key].finalize(output_idx_files[key])
builders[key + "_label"].finalize(output_idx_files[key + "_label"])
if args.reward_key is not None:
builders[key + "_reward"].finalize(output_idx_files[key + "_reward"])
if __name__ == "__main__":
main()
|