File size: 14,827 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A script for processing a dataset such that chat templates are utilized in the creation of the data.
These are then used to perform instruction/chat model finetunes (for example, finetuning a model on only the assistant
portions of a chatml dataset).

This follows the same output format as 'preprocess_data_with_mask.py' but using chat templates to generate the data.
This way we can support multiturn chat data in the finetuning process. instead of relying on a single turn of data.

To run this script, first edit `tools/datasets/corpora.py` such that the command to call
 `tools/datasets/preprocess_data_with_chat_template.py` is as follows:

```
cmd = f"python tools/datasets/preprocess_data_with_with_chat_template.py \
    --input {jsonl_filepath} \
    --output-prefix {parent_folder}/{self.name} \
    --tokenizer-path {hf-tokenizer} \
    --jsonl-keys {jsonl_keys} \
    --dataset-impl mmap \
    --workers {self.num_workers} "

if self.only_last:
    cmd += f"--only-last "

if self.no_mask:
    cmd += f"--no-mask "
```

Then, specify
```
"train_data_paths": ["/path/to/dataset/name_text_document"],
"label_data_paths": ["/path/to/dataset/name_label_document"]
```
in your YML config. This will then allow for finetuning on the data with loss masks set appropriately.

"""

import argparse
import multiprocessing
import os
import sys

import lm_dataformat as lmd
import numpy as np

sys.path.append(
    os.path.abspath(
        os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir)
    )
)

import time
import tqdm
import jsonlines

from megatron.data import indexed_dataset
from threading import Semaphore
from typing import List, Dict, Tuple
from transformers import AutoTokenizer, PreTrainedTokenizer


def build_chat(
    chat: List[Dict[str, str]],
    generation_role: str,
    apply_mask: bool,
    tokenizer: PreTrainedTokenizer,
    only_last_turn: bool = False,
    for_rm: bool = False,
) -> Tuple[List[int], List[int]]:
    """
    Build a chat from a list of dictionaries. Each dictionary should have a "role" and "content" key, this follows the
    Chat Template from https://huggingface.co/docs/transformers/main/en/chat_templating

    :param chat: A list of dictionaries with "role" and "content" keys
    :param generation_role: The role of the model generating the chat, usually "assistant"
    :param apply_mask: Whether to apply a loss mask to the chat, if False, all tokens will be included in the loss
    :param tokenizer: A HF tokenizer
    :param only_last_turn: Whether to only include the last turn in the chat, needed for some fine-tuning tasks
    """
    tokens = []
    mask = []
    if apply_mask is False:
        tokens = tokenizer.apply_chat_template(chat)
        mask = tokens
        return tokens, mask
    elif for_rm:
        tokens = tokenizer.apply_chat_template(chat)
        mask = [-100] * len(tokens)
        if tokenizer.eos_token_id is not None:
            # since this is processed in a causal format (input[:-1], mask[1:], we need to put two here...
            mask.append(-100)
            tokens.append(tokenizer.eos_token_id)
            mask.append(tokenizer.eos_token_id)
            tokens.append(tokenizer.eos_token_id)
        else:
            raise ValueError(
                "Tokenizer does not have an EOS token, unable to determine good mask, please edit and make your own."
            )
        return tokens, mask
    for i, turn in enumerate(chat):
        add_gen = (
            False if i == len(chat) - 1 else chat[i + 1]["role"] == generation_role
        )
        chat_tokens = tokenizer.apply_chat_template(
            chat[: i + 1], add_generation_prompt=add_gen
        )[len(tokens) :]
        # remove previous stuff...
        tokens.extend(chat_tokens)
        if only_last_turn and (i != len(chat) - 1):
            mask.extend([-100] * len(chat_tokens))
        elif apply_mask and (turn["role"] != generation_role):
            mask.extend([-100] * len(chat_tokens))
        else:
            mask.extend(chat_tokens)
    if tokenizer.eos_token_id is not None:
        mask.append(tokenizer.eos_token_id if mask[-1] != -100 else -100)
        tokens.append(tokenizer.eos_token_id)
    return tokens, mask


class Encoder(object):
    def __init__(self, args):
        self.args = args

    def initializer(self):
        # Use Encoder class as a container for global data
        Encoder.tokenizer = AutoTokenizer.from_pretrained(self.args.tokenizer_path)

    def encode(self, text):
        ids = {}
        for key in self.args.jsonl_keys:
            text_ids, label_ids = build_chat(
                text[key],
                self.args.generation_role,
                not self.args.no_mask,
                Encoder.tokenizer,
                self.args.only_last,
                self.args.for_rm,
            )
            if self.args.reward_key is not None:
                reward = text[self.args.reward_key]
                if self.args.binary_reward:
                    reward = [1] if reward else [-1]
                elif type(reward) == float:
                    reward = [reward]
                ids[key] = (text_ids, label_ids, reward)
            else:
                ids[key] = (text_ids, label_ids, None)
        return ids, len(text)


def get_args():
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group(title="input data")
    group.add_argument(
        "--input",
        type=str,
        required=True,
        help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
        "list",
    )
    group.add_argument(
        "--jsonl-keys",
        nargs="+",
        default=["conversation"],
        help="space separate listed of keys to extract from jsonl. Default: text",
    )
    group.add_argument(
        "--no-mask",
        help="If set, this will not mask any tokens in the input data.",
        action="store_true",
    )
    group.add_argument(
        "--for-rm",
        help="If set, this will mask everything except the last token in the chat.",
        action="store_true",
    )

    group.add_argument(
        "--generation-role",
        type=str,
        default="assistant",
        help="The role of the model generating the chat, usually 'assistant'. Default: assistant",
    )
    group.add_argument(
        "--only-last",
        help="If set, this will mask everything except the last turn in the chat.",
        action="store_true",
    )
    group.add_argument(
        "--reward-key",
        type=str,
        default=None,
        help="Optional: key to use for reward data in the input data.",
    )
    group.add_argument(
        "--binary-reward",
        help="If set, this will treat the reward data as a boolean.",
        action="store_true",
    )
    group.add_argument(
        "--num-docs",
        default=None,
        help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
        type=int,
    )
    group = parser.add_argument_group(title="tokenizer")
    group.add_argument(
        "--tokenizer-path",
        type=str,
        required=True,
        help="Path to HF Tokenizer.",
    )
    group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
    group = parser.add_argument_group(title="output data")
    group.add_argument(
        "--output-prefix",
        type=str,
        required=True,
        help="Path to binary output file without suffix",
    )
    group.add_argument(
        "--dataset-impl",
        type=str,
        default="mmap",
        choices=["lazy", "cached", "mmap"],
        help="Dataset implementation to use. Default: mmap",
    )

    group = parser.add_argument_group(title="runtime")
    group.add_argument(
        "--workers", type=int, default=1, help="Number of worker processes to launch"
    )
    group.add_argument(
        "--log-interval",
        type=int,
        default=100,
        help="Interval between progress updates",
    )
    args = parser.parse_args()
    args.keep_empty = False

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.model_parallel_size = 1

    return args


def yield_from_files(fnames: list, semaphore):
    """
    Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
    other compressed formats. Also filters out empty documents.

    :param fnames: list of filenames
    """

    def yielder(fname, semaphore):
        with open(fname, encoding="utf-8") as f:
            reader = jsonlines.Reader(f)
            for f in reader:
                semaphore.acquire()
                yield f

    for fname in fnames:
        semaphore.acquire()

        yield from yielder(fname, semaphore)


def main():
    args = get_args()
    encoder = Encoder(args)
    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
    print(f"Vocab size: {tokenizer.vocab_size}")
    print(f"Output prefix: {args.output_prefix}")

    # build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
    # hence building up memory
    semaphore = Semaphore(10000 + args.workers)

    # use multiprocessing to iterate over input documents
    fin = yield_from_files(args.input.split(","), semaphore)

    if args.workers > 1:
        pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
        encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
    else:
        encoder.initializer()
        encoded_docs = (encoder.encode(doc) for doc in fin)

    # make a dataset builder for each key in args.jsonl_keys
    # each key will output to a different file beginning with args.output_prefix
    output_bin_files = {}
    output_idx_files = {}
    builders = {}
    for key in args.jsonl_keys:
        output_bin_files[key] = "{}_{}_{}.bin".format(
            args.output_prefix, key, "document"
        )
        output_idx_files[key] = "{}_{}_{}.idx".format(
            args.output_prefix, key, "document"
        )
        builders[key] = indexed_dataset.make_builder(
            output_bin_files[key],
            impl=args.dataset_impl,
            vocab_size=tokenizer.vocab_size,
        )
        builders[key]._dtype = np.int32
        if not args.no_mask:
            assert (
                key + "_label" not in args.jsonl_keys
            ), "label should not be included as it will be generated according to the mask."
            label_key = key + "_label"
            output_bin_files[label_key] = "{}_{}_{}.bin".format(
                args.output_prefix, label_key, "document"
            )
            output_idx_files[label_key] = "{}_{}_{}.idx".format(
                args.output_prefix, label_key, "document"
            )
            builders[label_key] = indexed_dataset.make_builder(
                output_bin_files[label_key],
                impl=args.dataset_impl,
                vocab_size=tokenizer.vocab_size,
            )
            builders[label_key]._dtype = np.int32
        if args.reward_key is not None:
            assert (
                key + "_reward" not in args.jsonl_keys
            ), "reward should not be included as it will be generated from the data."
            reward_key = key + "_reward"
            output_bin_files[reward_key] = "{}_{}_{}.bin".format(
                args.output_prefix, reward_key, "document"
            )
            output_idx_files[reward_key] = "{}_{}_{}.idx".format(
                args.output_prefix, reward_key, "document"
            )
            builders[reward_key] = indexed_dataset.make_builder(
                output_bin_files[reward_key],
                impl=args.dataset_impl,
                vocab_size=tokenizer.vocab_size,
            )
            builders[reward_key]._dtype = np.int32

    # actually do tokenization
    proc_start = time.time()
    total_bytes_processed = 0
    pbar = tqdm.tqdm()
    for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
        total_bytes_processed += bytes_processed

        # release semaphore so `yield_from_files` can add another file to the buffer
        semaphore.release()

        # add each tokenized document / sentence
        for key, conv in doc.items():
            tokens = conv[0]
            token_mask = conv[1]
            reward = conv[2]
            builders[key].add_item(np.array(tokens, dtype=builders[key].dtype))
            builders[key + "_label"].add_item(
                np.array(token_mask, dtype=builders[key + "_label"].dtype)
            )
            if args.reward_key is not None:
                builders[key + "_reward"].add_item(
                    np.array(reward, dtype=builders[key + "_reward"].dtype)
                )
            # add indx...
            builders[key].end_document()
            builders[key + "_label"].end_document()
            if args.reward_key is not None:
                builders[key + "_reward"].end_document()
            if i == 1:
                print("key: ", key)
                print("tokens: ", tokens)
                print("token_mask: ", token_mask)
                print("Reward: ", reward)
        # log progress
        if i % args.log_interval == 0:
            current = time.time()
            elapsed = current - proc_start
            mbs = total_bytes_processed / elapsed / 1024 / 1024
            pbar.set_description(
                f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed} docs/s, {mbs} MB/s)."
            )
            if i != 0:
                pbar.update(args.log_interval)

    # save output file
    update_keys = args.jsonl_keys
    for key in update_keys:
        builders[key].finalize(output_idx_files[key])
        builders[key + "_label"].finalize(output_idx_files[key + "_label"])
        if args.reward_key is not None:
            builders[key + "_reward"].finalize(output_idx_files[key + "_reward"])


if __name__ == "__main__":
    main()