NEOX / megatron /model /norms.py
akswelh's picture
Upload 251 files
d90b3a8 verified
raw
history blame
3.49 kB
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.nn import LayerNorm as LayerNorm
def get_norm(neox_args):
if neox_args.norm == "rmsnorm":
eps = neox_args.rms_norm_epsilon
if neox_args.rmsnorm_fusion:
from .fused_layer_norm import MixedFusedRMSNorm
norm = MixedFusedRMSNorm
else:
norm = RMSNorm
elif neox_args.norm == "layernorm":
eps = neox_args.layernorm_epsilon
if neox_args.layernorm_fusion:
from .fused_layer_norm import MixedFusedLayerNorm
norm = MixedFusedLayerNorm
else:
norm = LayerNorm
elif neox_args.norm == "scalenorm":
eps = neox_args.scalenorm_epsilon
norm = ScaleNorm
elif neox_args.norm == "te_rmsnorm":
from .transformer_engine import TERMSNorm
norm = TERMSNorm
eps = neox_args.rms_norm_epsilon
elif neox_args.norm == "te_layernorm":
from .transformer_engine import TELayerNorm
norm = TELayerNorm
eps = neox_args.layernorm_epsilon
else:
raise ValueError(f"norm {neox_args.norm} not recognized")
return norm, eps
class RMSNorm(torch.nn.Module):
def __init__(self, dim, p=-1.0, eps=1e-8, bias=False):
"""
Root Mean Square Layer Normalization
:param dim: model size
:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled)
:param eps: epsilon value, default 1e-8
:param bias: whether use bias term for RMSNorm, disabled by
default because RMSNorm doesn't enforce re-centering invariance.
"""
super(RMSNorm, self).__init__()
self.eps = eps
self.d = dim
self.p = p
self.bias = bias
self.scale = torch.nn.Parameter(torch.ones(dim))
self.register_parameter("scale", self.scale)
if self.bias:
self.offset = torch.nn.Parameter(torch.zeros(dim))
self.register_parameter("offset", self.offset)
def forward(self, x):
dtype = x.dtype
if self.p < 0.0 or self.p > 1.0:
norm_x = x.norm(2, dim=-1, keepdim=True)
d_x = self.d
else:
partial_size = int(self.d * self.p)
partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)
norm_x = partial_x.norm(2, dim=-1, keepdim=True)
d_x = partial_size
rms_x = norm_x * d_x ** (-1.0 / 2)
x_normed = x / (rms_x + self.eps)
if self.bias:
return self.scale * x_normed + self.offset
return (self.scale * x_normed).to(dtype)
class ScaleNorm(torch.nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.g = torch.nn.Parameter(torch.ones(1))
self.eps = eps
def forward(self, x):
n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps)
return x / n * self.g