NEOX / megatron /model /positional_embeddings.py
akswelh's picture
Upload 251 files
d90b3a8 verified
raw
history blame
10.2 kB
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import math
class SinusoidalPositionalEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000, precision=torch.half):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.precision = precision
def forward(self, x, seq_dim=1):
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
if self.precision == torch.bfloat16:
sinusoid_inp = sinusoid_inp.float()
sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos()
if self.precision == torch.bfloat16:
sin, cos = sin.bfloat16(), cos.bfloat16()
emb = torch.cat((sin, cos), dim=-1)
return emb[None, :, :]
class RotaryEmbedding(torch.nn.Module):
def __init__(
self, dim, max_seq_len, base=10000, precision=torch.half, save_inv_freqs=False
):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq, persistent=save_inv_freqs)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
self.precision = precision
self.max_seq_len = max_seq_len
self.base = base
self.dim = dim
# precompute cos_cached, sin_cached in fp32
cos_cached, sin_cached, inv_freq = self._prepare_cache(
max_seq_len, precision, base
)
self.register_buffer("inv_freq", inv_freq, persistent=save_inv_freqs)
self.cos_cached = cos_cached
self.sin_cached = sin_cached
def _prepare_cache(self, seq_len, precision, base):
# precompute cos_cached, sin_cached in fp32
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float() / self.dim))
t = torch.arange(seq_len).type_as(inv_freq)
freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
cos_cached = emb.cos()[:, None, None, :]
sin_cached = emb.sin()[:, None, None, :]
return (
cos_cached.to(precision),
sin_cached.to(precision),
inv_freq.to(precision),
)
def forward(self, x, seq_dim=0, seq_len=None):
if seq_len is None:
seq_len = x.shape[seq_dim]
assert seq_len <= self.max_seq_len
if seq_len != self.max_seq_len:
# y, z, _ = self._prepare_cache(seq_len, self.precision, self.base)
return (
self.cos_cached[:seq_len, ...].to(x.device),
self.sin_cached[:seq_len, ...].to(x.device),
)
else:
return self.cos_cached.to(x.device), self.sin_cached.to(x.device)
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat(
(-x2, x1), dim=x1.ndim - 1
) # dim=-1 triggers a bug in earlier torch versions
@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
cos, sin = (
cos[offset : q.shape[0] + offset, ...],
sin[offset : q.shape[0] + offset, ...],
)
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
def apply_rotary_pos_emb_torch(
q, k, cos, sin, offset: int = 0
): # jitting fails with bf16
cos, sin = (
cos[offset : q.shape[0] + offset, ...],
sin[offset : q.shape[0] + offset, ...],
)
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class AliBi(torch.nn.Module):
def __init__(self, num_heads, mp_size=1, mp_rank=1):
super().__init__()
# megatron splits across heads, so we need to make sure each
# head receives the correct matrix
assert mp_size <= num_heads and mp_rank <= mp_size
self.mp_size = mp_size
self.mp_rank = mp_rank
self.num_heads = num_heads
self.slice_size = num_heads // mp_size
self.cached_matrix = None
self.cached_seq_len = None
slopes = torch.Tensor(self._get_slopes(num_heads))[
mp_rank * self.slice_size : (mp_rank + 1) * self.slice_size
]
self.register_buffer("slopes", slopes)
def _get_slopes(self, n):
"""
Get slopes for Alibi positional embedding
n : int = number of heads.
For best performance, restrict n to a power of 2.
"""
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
get_slopes_power_of_2(closest_power_of_2)
+ self._get_slopes(2 * closest_power_of_2)[0::2][
: n - closest_power_of_2
]
)
def bias(self, seq_len_q, seq_len_k, device, dtype):
# [b, np, sq, sk]
# seq_len_q = x.shape[-2]
# seq_len_k = x.shape[-1]
# Initialize the AliBi matrix to match the first provided key length; grow it exponentially
# afterwards if longer inputs are provided. This is important for inference, where we will
# encounter progressively longer samples; it should have no effect at training time.
if self.cached_seq_len is not None and self.cached_seq_len >= seq_len_k:
a = self.cached_matrix
else:
target_seq_len = (
seq_len_k if self.cached_seq_len is None else self.cached_seq_len * 4
)
a = -torch.tril(
torch.arange(target_seq_len)
.view(target_seq_len, 1)
.repeat(1, target_seq_len)
+ torch.arange(0, -target_seq_len, -1)
)
a = a.to(device).to(dtype)
slopes = self.slopes.to(a.device).to(a.dtype)
a = a * slopes.view(self.slopes.shape[0], 1, 1)
self.cached_seq_len = target_seq_len
self.cached_matrix = a
# If the AliBi matrix is larger than the key length, clip it.
if self.cached_seq_len > seq_len_k:
a = self.cached_matrix[:, :seq_len_k, :seq_len_k]
if seq_len_q != seq_len_k:
# In the train case x has dimensionality [b, np, sq, sk] with sq == sk
# The number of query tokens is equal to the number of key tokens
# At inference time with cache in layer_past sq is not equal to sk. sq only contains one token (the last one in the full sequence)
# In this case we use the appropriate token index of the cache matrix.
# As the cache matrix could already be bigger from a past inference, not the last token index in the sq sequence is used
assert (
seq_len_q == 1
), "assumption sq == sk unless at inference time with cache in layer_past with sq == 1"
a = a[:, seq_len_k - 1, :].view(
a.shape[0], 1, a.shape[2]
) # seq_len_k - 1 points to the last token index in the current inference batch.
return a
def forward(self, x):
# [b, np, sq, sk]
seq_len_q = x.shape[-2]
seq_len_k = x.shape[-1]
# Initialize the AliBi matrix to match the first provided key length; grow it exponentially
# afterwards if longer inputs are provided. This is important for inference, where we will
# encounter progressively longer samples; it should have no effect at training time.
if self.cached_seq_len is not None and self.cached_seq_len >= seq_len_k:
a = self.cached_matrix
else:
target_seq_len = (
seq_len_k if self.cached_seq_len is None else self.cached_seq_len * 4
)
a = -torch.tril(
torch.arange(target_seq_len)
.view(target_seq_len, 1)
.repeat(1, target_seq_len)
+ torch.arange(0, -target_seq_len, -1)
)
a = a.to(x.device).to(x.dtype)
slopes = self.slopes.to(a.device).to(a.dtype)
a = a * slopes.view(self.slopes.shape[0], 1, 1)
self.cached_seq_len = target_seq_len
self.cached_matrix = a
# If the AliBi matrix is larger than the key length, clip it.
if self.cached_seq_len > seq_len_k:
a = self.cached_matrix[:, :seq_len_k, :seq_len_k]
if seq_len_q != seq_len_k:
# In the train case x has dimensionality [b, np, sq, sk] with sq == sk
# The number of query tokens is equal to the number of key tokens
# At inference time with cache in layer_past sq is not equal to sk. sq only contains one token (the last one in the full sequence)
# In this case we use the appropriate token index of the cache matrix.
# As the cache matrix could already be bigger from a past inference, not the last token index in the sq sequence is used
assert (
seq_len_q == 1
), "assumption sq == sk unless at inference time with cache in layer_past with sq == 1"
a = a[:, seq_len_k - 1, :].view(
a.shape[0], 1, a.shape[2]
) # seq_len_k - 1 points to the last token index in the current inference batch.
return x + a