NEOX / megatron /mup_substitute.py
akswelh's picture
Upload 251 files
d90b3a8 verified
raw
history blame
7.8 kB
"""
Helper functions for performing coord check.
"""
import os
from copy import copy
from itertools import product
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from mup import coord_check as mup_coord_check
from megatron.training import train_step
def _get_coord_data(
neox_args,
timers,
lr_scheduler,
models,
dataloader,
optcls,
nsteps=3,
dict_in_out=False,
flatten_input=False,
flatten_output=False,
output_name="loss",
lossfn="xent",
filter_module_by_name=None,
fix_data=True,
cuda=True,
nseeds=1,
output_fdict=None,
input_fdict=None,
param_fdict=None,
show_progress=True,
one_hot_target=False,
):
df = []
for i in range(nseeds):
torch.manual_seed(i)
for width, model in models.items():
model = model()
model.train()
optimizer = optcls(model)
for step in range(nsteps + 1):
remove_hooks = []
# add hooks
for name, module in model.named_modules():
if filter_module_by_name and not filter_module_by_name(name):
continue
remove_hooks.append(
module.register_forward_hook(
mup_coord_check._record_coords(
df,
width,
name,
step + 1,
output_fdict=output_fdict,
input_fdict=input_fdict,
param_fdict=param_fdict,
)
)
)
# train for a step
loss_dict, skipped_iter = train_step(
neox_args=neox_args,
timers=timers,
data_iterator=dataloader,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
# remove hooks
for handle in remove_hooks:
handle.remove()
import gc
del model
gc.collect()
return pd.DataFrame(df)
def get_coord_data(
neox_args,
timers,
lr_scheduler,
models,
dataloader,
optimizer="sgd",
lr=None,
mup=True,
filter_trainable_by_name=None,
**kwargs
):
"""Get coord data for coord check.
Train the models in `models` with data from `dataloader` and optimizer
specified by `optimizer` and `lr` for `nsteps` steps, and record coordinate
statistics specified by `output_fdict`, `input_fdict`, `param_fdict`. By
default, only `l1` is computed for output activations of each module.
This function wraps around `_get_coord_data`, with the main difference being
user can specify common optimizers via a more convenient interface.
Inputs:
models:
a dict of lazy models, where the keys are numbers indicating width.
Each entry of `models` is a function that instantiates a model given
nothing.
dataloader:
an iterator whose elements are either Huggingface style dicts, if
`dict_in_out` is True, or (input, label). If `fix_data` is True
(which is the default), then only the first element of `dataloader`
is used in a loop and the rest of `dataloder` is ignored.
optimizer:
a string in `['sgd', 'adam', 'adamw']`, with default being `'sgd'`.
lr:
learning rate. By default is 0.1 for `'sgd'` and 1e-3 for others.
mup:
If True, then use the optimizer from `mup.optim`; otherwise, use the
one from `torch.optim`.
filter_trainable_by_name:
a function that returns a bool given module names (from
`model.named_modules()`), or None. If not None, then only modules
whose name yields True will be trained.
nsteps:
number of steps to train the model
dict_in_out:
whether the data loader contains Huggingface-style dict input and
output. Default: False
flatten_input:
if not `dict_in_out`, reshape the input to be
`input.view(input.shape[0], -1)`. Typically used for testing MLPs.
flatten_output:
if not `dict_in_out`, reshape the label to be `label.view(-1,
input.shape[-1])`.
output_name:
if `dict_in_out`, this is the key for the loss value if the output
is a dict. If the output is not a dict, then we assume the first
element of the output is the loss.
lossfn:
loss function to use if not `dict_in_out`. Can be either a string from
[`xent`, 'mse', 'nll', 'l1'] or a python `callable` such that
`lossfn(output, target)` returns the loss value. Examples of valid
`callable`s are `F.cross_entropy`, `F.mse_loss`, etc, where `F` is
`torch.nn.functional`. Default: 'xent'
filter_module_by_name:
a function that returns a bool given module names (from
`model.named_modules()`), or None. If not None, then only modules
whose name yields True will be recorded.
cuda:
whether to use cuda or not. Default: True
nseeds:
number of times to repeat the training, each with different seeds.
output_fdict, input_fdict, param_fdict:
function dicts to be used in `_record_coords`. By default, only `l1`
is computed for output activations of each module.
show_progress:
show progress using tqdm. Default: True
one_hot_target:
convert target label into a one-hot vector. This typically is only
used for `'mse'` or `'l1'` losses in classification tasks.
Default: False
Output:
a pandas DataFrame containing recorded results. The column names are
`'width', 'module', 't'` as well as names of statistics recorded, such
as `'l1'` (see `FDICT` for other premade statistics that can be
collected).
Breaking Changes:
In v1.0.0, when `lossfn=='mse'`, the target is automatically converted
to a one hot vector before loss computation. Starting in v1.1.0, this
behavior is turned off, and the user needs to explicitly turn on this
behavior by setting `one_hot_target=True`.
"""
if lr is None:
lr = 0.1 if optimizer == "sgd" else 1e-3
if mup:
from mup.optim import MuAdam as Adam
from mup.optim import MuAdamW as AdamW
from mup.optim import MuSGD as SGD
else:
from torch.optim import SGD, Adam, AdamW
def get_trainable(model):
params = model.parameters()
if filter_trainable_by_name is not None:
params = []
for name, p in model.named_parameters():
if filter_trainable_by_name(name):
params.append(p)
return params
if optimizer == "sgd":
optcls = lambda model: SGD(get_trainable(model), lr=lr)
elif optimizer == "adam":
optcls = lambda model: Adam(get_trainable(model), lr=lr)
elif optimizer == "adamw":
optcls = lambda model: AdamW(get_trainable(model), lr=lr)
elif optimizer is None:
raise ValueError("optimizer should be sgd|adam|adamw or a custom function")
data = _get_coord_data(
neox_args, timers, lr_scheduler, models, dataloader, optcls, **kwargs
)
data["optimizer"] = optimizer
data["lr"] = lr
return data