# Copyright (c) 2024, EleutherAI # This file is based on code by the authors denoted below and has been modified from its original version. # # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pairwise style dataset.""" import os import time import numpy as np import torch from megatron import mpu, print_rank_0 class PairwiseDataset(torch.utils.data.Dataset): def __init__( self, name, pos_data_prefix, # Don't need neg since it's assumed you have paired the data already. documents, pos_indexed_dataset, neg_indexed_dataset, num_samples, seq_length, seed, pack_impl="unpacked", build_index_mappings=True, use_shared_fs=True, pos_label_dataset=None, pos_ref_dataset=None, neg_label_dataset=None, neg_ref_dataset=None, allow_chopped=True, ): self.name = name self.pos_indexed_dataset = pos_indexed_dataset self.pos_label_dataset = pos_label_dataset self.pos_ref_dataset = pos_ref_dataset self.neg_indexed_dataset = neg_indexed_dataset self.neg_label_dataset = neg_label_dataset self.neg_ref_dataset = neg_ref_dataset self.pack_impl = pack_impl self.seq_length = seq_length # Checks assert np.min(documents) >= 0 assert (neg_label_dataset is not None and pos_label_dataset is not None) or ( neg_label_dataset is None and pos_label_dataset is None ), "Label datasets must be both None or both not None" assert np.max(documents) < pos_indexed_dataset.sizes.shape[0] assert pos_indexed_dataset.sizes.shape[0] == neg_indexed_dataset.sizes.shape[0] assert ( pack_impl != "packed" ), "Packed implementation not supported for pairwise dataset" if build_index_mappings: # Build index mappings. self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings( self.name, pos_data_prefix, documents, self.pos_indexed_dataset.sizes, self.neg_indexed_dataset.sizes, self.pos_label_dataset, self.neg_label_dataset, num_samples, seq_length, seed, pack_impl, use_shared_fs=use_shared_fs, allow_chopped=allow_chopped, ) self.shuffle_idx_len = self.shuffle_idx.shape[0] - 1 self.sample_idx_len = self.sample_idx.shape[0] - 1 if self.shuffle_idx_len != self.sample_idx_len - 1: print( f"WARNING: shuffle index length ({self.shuffle_idx_len}) is not equal to sample index length ({self.sample_idx_len})" ) def __len__(self): return min(self.shuffle_idx_len, self.sample_idx_len) def __getitem__(self, idx): try: # Get the shuffled index. idx = self.shuffle_idx[idx] # Start and end documents and offsets. doc_index_f = self.sample_idx[idx][0] doc_index_l = self.sample_idx[idx + 1][0] offset_f = self.sample_idx[idx][1] offset_l = self.sample_idx[idx + 1][1] # Labels and texts are supposed to be fully in sync. datasets = [self.pos_indexed_dataset, self.neg_indexed_dataset] if self.pos_label_dataset is not None: datasets += [ self.pos_label_dataset, self.neg_label_dataset, ] if self.pos_ref_dataset is not None: datasets += [ self.pos_ref_dataset, self.neg_ref_dataset, ] samples = [] pos_ref_samples = [] neg_ref_samples = [] # If we are within the same document, just extract the chunk. for n, dataset in enumerate(datasets): if doc_index_f == doc_index_l: samples.append( dataset.get( self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + 1, ) ) else: # Otherwise, get the rest of the initial document. sample_list = [ dataset.get(self.doc_idx[doc_index_f], offset=offset_f) ] # Loop over all in between documents and add the entire document. for i in range(doc_index_f + 1, doc_index_l): sample_list.append(dataset.get(self.doc_idx[i])) # And finally add the relevant portion of last document. sample_list.append( dataset.get(self.doc_idx[doc_index_l], length=offset_l + 1) ) samples.append(np.concatenate(sample_list)) for i in range(len(samples)): if len(samples[i]) < (self.seq_length + 1): if ((i == 2) or (i == 3)) and self.pos_label_dataset is not None: # Labels... So pad with -100 samples[i] = np.pad( samples[i], (0, (self.seq_length + 1) - len(samples[i])), mode="constant", constant_values=-100, ) else: # Pad with 0s, can use any number since it's masked. samples[i] = np.pad( samples[i], (0, (self.seq_length + 1) - len(samples[i])), mode="constant", constant_values=0, ) elif len(samples[i]) > (self.seq_length + 1): # Check for overflow and truncate. samples[i] = samples[i][: (self.seq_length + 1)] ret = {} ret["pos"] = np.array(samples[0], dtype=np.int64) ret["neg"] = np.array(samples[1], dtype=np.int64) if self.pos_label_dataset is not None: ret["pos_label"] = np.array(samples[2], dtype=np.int64) ret["neg_label"] = np.array(samples[3], dtype=np.int64) if self.pos_ref_dataset is not None: ret["pos_ref"] = np.array(samples[4], dtype=np.float32) ret["neg_ref"] = np.array(samples[5], dtype=np.float32) elif self.pos_ref_dataset is not None: # Don't have labels... ret["pos_ref"] = np.array(samples[2], dtype=np.float32) ret["neg_ref"] = np.array(samples[3], dtype=np.float32) return ret except IndexError: new_idx = idx % len(self) print( f"WARNING: Got index out of bounds error with index {idx} - taking modulo of index instead ({new_idx})" ) return self[new_idx] def _build_index_mappings( name, pos_data_prefix, documents, pos_sizes, neg_sizes, pos_label_dataset, neg_label_dataset, num_samples, seq_length, seed, packing_impl, use_shared_fs=True, allow_chopped=True, ): """Build doc-idx, sample-idx, and shuffle-idx. doc-idx: is an array (ordered) of documents to be used in training. sample-idx: is the start document index and document offset for each training sample. shuffle-idx: maps the sample index into a random index into sample-idx. """ # Number of tokens in each epoch and number of required epochs. tokens_per_epoch = _num_tokens(documents, pos_sizes) num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples) # rng state np_rng = np.random.RandomState(seed=seed) # Filename of the index mappings. _filename = pos_data_prefix _filename += "_{}_indexmap".format(name) _filename += "_{}ns".format(num_samples) _filename += "_{}sl".format(seq_length) _filename += "_{}s".format(seed) _filename += "_{}pi".format(packing_impl) doc_idx_filename = _filename + "_doc_idx.npy" sample_idx_filename = _filename + "_sample_idx.npy" shuffle_idx_filename = _filename + "_shuffle_idx.npy" if not use_shared_fs: should_process_dataset = int(os.environ["LOCAL_RANK"]) == 0 else: should_process_dataset = torch.distributed.get_rank() == 0 # Build the indexed mapping if not exist. if should_process_dataset: if ( (not os.path.isfile(doc_idx_filename)) or (not os.path.isfile(sample_idx_filename)) or (not os.path.isfile(shuffle_idx_filename)) ): print_rank_0( " > WARNING: could not find index map files, building " "the indices on rank 0 ..." ) # doc-idx. start_time = time.time() if packing_impl == "pack_until_overflow": # Naively pack data until it overflows, then roll it over to a new one instead. shuffle_idx = np.arange(num_samples) # Shuffle index around epochs np_rng.shuffle(shuffle_idx) sample_idx = [] doc_idx = [] # Iterate over files until we have enough samples. temp_shuffle_idx = np.arange(len(documents)) np_rng.shuffle(temp_shuffle_idx) running_length = 0 curr_shuffle_idx = 0 while len(sample_idx) < num_samples: # If not allow_chopped, skip this item if it's chopped. if not allow_chopped: if ( pos_sizes[temp_shuffle_idx[curr_shuffle_idx]] < seq_length + 1 ): curr_shuffle_idx += 1 continue if ( neg_sizes[temp_shuffle_idx[curr_shuffle_idx]] < seq_length + 1 ): curr_shuffle_idx += 1 continue # Then, check if we need to skip this item... if pos_label_dataset is not None: if np.all( pos_label_dataset.get(temp_shuffle_idx[curr_shuffle_idx])[ : seq_length + 1 ] == -100 ): curr_shuffle_idx += 1 continue if np.all( neg_label_dataset.get(temp_shuffle_idx[curr_shuffle_idx])[ : seq_length + 1 ] == -100 ): curr_shuffle_idx += 1 continue doc_length = max( pos_sizes[temp_shuffle_idx[curr_shuffle_idx]], neg_sizes[temp_shuffle_idx[curr_shuffle_idx]], ) if running_length == 0: sample_idx.append(np.array([len(doc_idx), 0])) doc_idx.append(temp_shuffle_idx[curr_shuffle_idx]) running_length += doc_length else: if running_length + doc_length > (seq_length + 1): running_length = doc_length sample_idx.append(np.array([len(doc_idx), 0])) else: running_length += doc_length doc_idx.append(temp_shuffle_idx[curr_shuffle_idx]) curr_shuffle_idx += 1 if curr_shuffle_idx == len(documents): curr_shuffle_idx = 0 np_rng.shuffle(temp_shuffle_idx) sample_idx.append(np.array([len(doc_idx), 0])) np.save(doc_idx_filename, doc_idx, allow_pickle=True) np.save(sample_idx_filename, sample_idx, allow_pickle=True) np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True) elif packing_impl == "unpacked": # Unpacked data, one sample per document. shuffle_idx = np.array([i % len(documents) for i in range(num_samples)]) np_rng.shuffle(shuffle_idx) sample_idx = np.zeros((num_samples + 1, 2), dtype=np.int64) sample_idx[:, 0] = np.array([i for i in range(num_samples + 1)]) sample_idx[:, 1] = 0 doc_idx = list() doc_i = 0 while len(doc_idx) <= num_samples: # Check if we need to skip this item... if not allow_chopped: # +1 since we shift left/right by 1 if pos_sizes[doc_i] > seq_length + 1: doc_i = (doc_i + 1) % len(documents) continue if neg_sizes[doc_i] > seq_length + 1: doc_i = (doc_i + 1) % len(documents) continue # In theory if we don't allow chopped we should be able to skip it, but the warm fuzzies I get # from this are worth the extra bool check if np.all(pos_label_dataset.get(doc_i)[:seq_length] == -100): doc_i = (doc_i + 1) % len(documents) continue if np.all(neg_label_dataset.get(doc_i)[:seq_length] == -100): doc_i = (doc_i + 1) % len(documents) continue doc_idx.append(doc_i) doc_i = (doc_i + 1) % len(documents) np.save(doc_idx_filename, doc_idx, allow_pickle=True) np.save(sample_idx_filename, sample_idx, allow_pickle=True) np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=mpu.get_io_parallel_group()) assert counts[0].item() == torch.distributed.get_world_size( group=mpu.get_io_parallel_group() ) # Load mappings. start_time = time.time() print_rank_0(" > loading doc-idx mapping from {}".format(doc_idx_filename)) doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode="r") print_rank_0(" > loading sample-idx mapping from {}".format(sample_idx_filename)) sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode="r") print_rank_0(" > loading shuffle-idx mapping from {}".format(shuffle_idx_filename)) shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode="r") print_rank_0( " loaded indexed file in {:3.3f} seconds".format(time.time() - start_time) ) print_rank_0(" total number of samples: {}".format(sample_idx.shape[0])) print_rank_0(" total number of epochs: {}".format(num_epochs)) return doc_idx, sample_idx, shuffle_idx def _num_tokens(documents, sizes): """Total number of tokens in the dataset.""" return np.sum(sizes[documents]) def _num_epochs(tokens_per_epoch, seq_length, num_samples): """Based on number of samples and sequence length, calculate how many epochs will be needed.""" num_epochs = 0 total_tokens = 0 while True: num_epochs += 1 total_tokens += tokens_per_epoch # -1 is because we need to retrieve seq_length + 1 token each time # but the last token will overlap with the first token of the next # sample except for the last sample. if ((total_tokens - 1) // seq_length) >= num_samples: return num_epochs def _build_doc_idx(documents, num_epochs, np_rng): """Build an array with length = number-of-epochs * number-of-documents. Each index is mapped to a corresponding document.""" doc_idx = np.mgrid[0:num_epochs, 0 : len(documents)][1] doc_idx[:] = documents doc_idx = doc_idx.reshape(-1) doc_idx = doc_idx.astype(np.int32) np_rng.shuffle(doc_idx) return doc_idx def _build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch): """Sample index mapping is a 2D array with sizes [number-of-samples + 1, 2] where [..., 0] contains the index into `doc_idx` and [..., 1] is the starting offset in that document.""" # Total number of samples. For -1 see comments in `_num_epochs`. num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int64) # Index into sample_idx. sample_index = 0 # Index into doc_idx. doc_idx_index = 0 # Beginning offset for each document. doc_offset = 0 # Start with first document and no offset. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 while sample_index <= num_samples: # Start with a fresh sequence. remaining_seq_length = seq_length + 1 while remaining_seq_length != 0: # Get the document length. doc_id = doc_idx[doc_idx_index] doc_length = sizes[doc_id] - doc_offset # And add it to the current sequence. remaining_seq_length -= doc_length # If we have more than a full sequence, adjust offset and set # remaining length to zero so we return from the while loop. # Note that -1 here is for the same reason we have -1 in # `_num_epochs` calculations. if remaining_seq_length <= 0: doc_offset += remaining_seq_length + doc_length - 1 remaining_seq_length = 0 else: # Otherwise, start from the beginning of the next document. doc_idx_index += 1 doc_offset = 0 # Record the sequence. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 return sample_idx def _build_shuffle_idx(size, np_rng): """Build the range [0, size) and shuffle.""" dtype_ = np.uint32 if size >= (np.iinfo(np.uint32).max - 1): dtype_ = np.int64 shuffle_idx = np.arange(start=0, stop=size, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx) return shuffle_idx