kaisugi
commited on
Commit
·
976f5d4
0
Parent(s):
initial commit
Browse files- .gitattributes +34 -0
- README.md +114 -0
- config.json +24 -0
- pytorch_model.bin +3 -0
- tokenizer_config.json +10 -0
- vocab.txt +0 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ja
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
tags:
|
5 |
+
- roberta
|
6 |
+
- medical
|
7 |
+
inference: false
|
8 |
+
---
|
9 |
+
|
10 |
+
# alabnii/jmedroberta-base-manbyo-wordpiece-vocab50000
|
11 |
+
|
12 |
+
## Model description
|
13 |
+
|
14 |
+
This is a Japanese RoBERTa base model pre-trained on academic articles in medical sciences collected by Japan Science and Technology Agency (JST).
|
15 |
+
|
16 |
+
This model is released under the [Creative Commons 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/deed) (CC BY-NC-SA 4.0).
|
17 |
+
|
18 |
+
## Datasets used for pre-training
|
19 |
+
|
20 |
+
- abstracts (train: 1.6GB (10M sentences), validation: 0.2GB (1.3M sentences))
|
21 |
+
- abstracts & body texts (train: 0.2GB (1.4M sentences))
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
|
25 |
+
**Before using the model, make sure that [Manbyo Dictionary](https://sociocom.naist.jp/manbyou-dic/) has been downloaded under `/usr/local/lib/mecab/dic/userdic`.**
|
26 |
+
|
27 |
+
```bash
|
28 |
+
# download Manbyo-Dictionary
|
29 |
+
|
30 |
+
mkdir -p /usr/local/lib/mecab/dic/userdic
|
31 |
+
wget https://sociocom.jp/~data/2018-manbyo/data/MANBYO_201907_Dic-utf8.dic && mv MANBYO_201907_Dic-utf8.dic /usr/local/lib/mecab/dic/userdic
|
32 |
+
```
|
33 |
+
|
34 |
+
**Input text must be converted to full-width characters(全角)in advance.**
|
35 |
+
|
36 |
+
You can use this model for masked language modeling as follows:
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
39 |
+
|
40 |
+
model = AutoModelForMaskedLM.from_pretrained("alabnii/jmedroberta-base-manbyo-wordpiece-vocab50000")
|
41 |
+
model.eval()
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("alabnii/jmedroberta-base-manbyo-wordpiece-vocab50000")
|
43 |
+
|
44 |
+
texts = ['この患者は[MASK]と診断された。']
|
45 |
+
inputs = tokenizer.batch_encode_plus(texts, return_tensors='pt')
|
46 |
+
outputs = model(**inputs)
|
47 |
+
tokenizer.convert_ids_to_tokens(outputs.logits[0][1:-1].argmax(axis=-1))
|
48 |
+
# ['この', '患者', 'は', 'SLE', 'と', '診断', 'さ', 'れ', 'た', '。']
|
49 |
+
```
|
50 |
+
|
51 |
+
Alternatively, you can employ [Fill-mask pipeline](https://huggingface.co/tasks/fill-mask).
|
52 |
+
|
53 |
+
```python
|
54 |
+
from transformers import pipeline
|
55 |
+
|
56 |
+
fill = pipeline("fill-mask", model="alabnii/jmedroberta-base-manbyo-wordpiece-vocab50000", top_k=10)
|
57 |
+
fill("この患者は[MASK]と診断された。")
|
58 |
+
#[{'score': 0.035826072096824646,
|
59 |
+
# 'token': 10840,
|
60 |
+
# 'token_str': 'SLE',
|
61 |
+
# 'sequence': 'この 患者 は SLE と 診断 さ れ た 。'},
|
62 |
+
# {'score': 0.020926717668771744,
|
63 |
+
# 'token': 10777,
|
64 |
+
# 'token_str': '統合失調症',
|
65 |
+
# 'sequence': 'この 患者 は 統合失調症 と 診断 さ れ た 。'},
|
66 |
+
# {'score': 0.02092057280242443,
|
67 |
+
# 'token': 8338,
|
68 |
+
# 'token_str': '糖尿病',
|
69 |
+
# 'sequence': 'この 患者 は 糖尿病 と 診断 さ れ た 。'},
|
70 |
+
# ...
|
71 |
+
```
|
72 |
+
|
73 |
+
You can fine-tune this model on downstream tasks.
|
74 |
+
|
75 |
+
**See also sample Colab notebooks:** https://colab.research.google.com/drive/1p2770dXs0lge1IkuSHYLO-G-KJ4gZtou?usp=sharing
|
76 |
+
|
77 |
+
## Tokenization
|
78 |
+
|
79 |
+
Mecab (w/ IPAdic & [Manbyo Dictionary](https://sociocom.naist.jp/manbyou-dic/)) was used for pre-training. Each word is tokenized into tokens by [WordPiece](https://huggingface.co/course/chapter6/6).
|
80 |
+
|
81 |
+
## Vocabulary
|
82 |
+
|
83 |
+
The vocabulary consists of 50000 tokens including words (IPAdic & [Manbyo Dictionary](https://sociocom.naist.jp/manbyou-dic/)) and subwords induced by [WordPiece](https://huggingface.co/course/chapter6/6).
|
84 |
+
|
85 |
+
## Training procedure
|
86 |
+
|
87 |
+
The following hyperparameters were used during pre-training:
|
88 |
+
|
89 |
+
- learning_rate: 0.0001
|
90 |
+
- train_batch_size: 32
|
91 |
+
- eval_batch_size: 32
|
92 |
+
- seed: 42
|
93 |
+
- distributed_type: multi-GPU
|
94 |
+
- num_devices: 8
|
95 |
+
- total_train_batch_size: 256
|
96 |
+
- total_eval_batch_size: 256
|
97 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
98 |
+
- lr_scheduler_type: linear
|
99 |
+
- lr_scheduler_warmup_steps: 20000
|
100 |
+
- training_steps: 2000000
|
101 |
+
- mixed_precision_training: Native AMP
|
102 |
+
|
103 |
+
## Note: Why do we call our model RoBERTa, not BERT?
|
104 |
+
|
105 |
+
As the config file suggests, our model is based on HuggingFace's `BertForMaskedLM` class. However, we consider our model as **RoBERTa** for the following reasons:
|
106 |
+
|
107 |
+
- We kept training only with max sequence length (= 512) tokens.
|
108 |
+
- We removed the next sentence prediction (NSP) training objective.
|
109 |
+
- We introduced dynamic masking (changing the masking pattern in each training iteration).
|
110 |
+
|
111 |
+
## Acknowledgements
|
112 |
+
|
113 |
+
This work was supported by Japan Japan Science and Technology Agency (JST) AIP Trilateral AI Research (Grant Number: JPMJCR20G9), and Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) (Project ID: jh221004), in Japan.
|
114 |
+
In this research work, we used the "[mdx: a platform for the data-driven future](https://mdx.jp/)".
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.16.1",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 50000
|
24 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f46c45d39e0536ea37d6514f51035d2c05150465c61c5c88fd7348f282ee368c
|
3 |
+
size 498061650
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
3 |
+
"word_tokenizer_type": "mecab",
|
4 |
+
"subword_tokenizer_type": "wordpiece",
|
5 |
+
"mecab_kwargs": {
|
6 |
+
"mecab_dic": "ipadic",
|
7 |
+
"mecab_option": "-u /usr/local/lib/mecab/dic/userdic/MANBYO_201907_Dic-utf8.dic",
|
8 |
+
"normalize_text": false
|
9 |
+
}
|
10 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|