File size: 2,007 Bytes
0f0084c
5ecb31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f0084c
 
5ecb31a
 
0f0084c
5ecb31a
0f0084c
5ecb31a
 
 
 
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
0f0084c
5ecb31a
 
 
 
 
 
 
 
 
 
 
 
0f0084c
5ecb31a
0f0084c
5ecb31a
 
 
 
0f0084c
 
5ecb31a
0f0084c
5ecb31a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
language:
- dv
base_model: alakxender/w2v-bert-2.0-dhivehi-cv
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: W2V2 Bert 2.0 Dv - alakxender
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: dv
      split: test
      args: 'config: dv, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 0.45908364040881594
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# W2V2 Bert 2.0 Dv - alakxender

This model is a fine-tuned version of [alakxender/w2v-bert-2.0-dhivehi-cv](https://huggingface.co/alakxender/w2v-bert-2.0-dhivehi-cv) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3580
- Wer: 0.4591

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.9272        | 3.8961 | 300  | 0.3712          | 0.5096 |
| 0.1846        | 7.7922 | 600  | 0.3580          | 0.4591 |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1