File size: 1,992 Bytes
0f0084c 5ecb31a 2127643 5ecb31a 0f0084c 5ecb31a 0f0084c b386381 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a 0f0084c 5ecb31a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- dv
base_model: alakxender/w2v-bert-2.0-dhivehi-cv
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: w2v Bert 2.0 Dv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: dv
split: test
args: 'config: dv, split: test'
metrics:
- name: Wer
type: wer
value: 0.45908364040881594
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v Bert 2.0 Dv - alakxender
This model is a fine-tuned version of [alakxender/w2v-bert-2.0-dhivehi-cv](https://huggingface.co/alakxender/w2v-bert-2.0-dhivehi-cv) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3580
- Wer: 0.4591
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.9272 | 3.8961 | 300 | 0.3712 | 0.5096 |
| 0.1846 | 7.7922 | 600 | 0.3580 | 0.4591 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|