--- language: - dv base_model: alakxender/w2v-bert-2.0-dhivehi-cv tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: w2v Bert 2.0 Dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: dv split: test args: 'config: dv, split: test' metrics: - name: Wer type: wer value: 0.45908364040881594 --- # w2v Bert 2.0 Dv - alakxender This model is a fine-tuned version of [alakxender/w2v-bert-2.0-dhivehi-cv](https://huggingface.co/alakxender/w2v-bert-2.0-dhivehi-cv) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3580 - Wer: 0.4591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.9272 | 3.8961 | 300 | 0.3712 | 0.5096 | | 0.1846 | 7.7922 | 600 | 0.3580 | 0.4591 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1