Update README.md
Browse files
README.md
CHANGED
@@ -96,7 +96,7 @@ out = model.generate(**inputs, output_scores=True, return_dict_in_generate=True,
|
|
96 |
# sanity check that our sequences are expected length (1 + start token + end token = 3)
|
97 |
for i, seq in enumerate(out.sequences):
|
98 |
assert len(
|
99 |
-
seq) == 3, f"generated sequence {i} not of expected length, 3."
|
100 |
f" Actual length: {len(seq)}"
|
101 |
|
102 |
# get the scores for our only token of interest
|
@@ -108,8 +108,8 @@ scores = out.scores[0]
|
|
108 |
# sanity check that these labels are always the top 3 scoring
|
109 |
for i, sequence_scores in enumerate(scores):
|
110 |
top_scores = sequence_scores.argsort()[-3:]
|
111 |
-
assert set(top_scores.tolist()) == set(label_inds),
|
112 |
-
f"top scoring tokens are not expected for this task."
|
113 |
f" Expected: {label_inds}. Got: {top_scores.tolist()}."
|
114 |
|
115 |
# cut down scores to our task labels
|
@@ -135,7 +135,7 @@ print(entail_vs_contra_probas)
|
|
135 |
|
136 |
# or we can show probas similar to `ZeroShotClassificationPipeline`
|
137 |
# this gives a zero-shot classification style output across labels
|
138 |
-
entail_scores = scores[:,
|
139 |
entail_probas = softmax(entail_scores, dim=0)
|
140 |
print(entail_probas)
|
141 |
# tensor([7.6341e-03, 4.2873e-04, 9.9194e-01])
|
|
|
96 |
# sanity check that our sequences are expected length (1 + start token + end token = 3)
|
97 |
for i, seq in enumerate(out.sequences):
|
98 |
assert len(
|
99 |
+
seq) == 3, f"generated sequence {i} not of expected length, 3." \\\\
|
100 |
f" Actual length: {len(seq)}"
|
101 |
|
102 |
# get the scores for our only token of interest
|
|
|
108 |
# sanity check that these labels are always the top 3 scoring
|
109 |
for i, sequence_scores in enumerate(scores):
|
110 |
top_scores = sequence_scores.argsort()[-3:]
|
111 |
+
assert set(top_scores.tolist()) == set(label_inds), \\\\
|
112 |
+
f"top scoring tokens are not expected for this task." \\\\
|
113 |
f" Expected: {label_inds}. Got: {top_scores.tolist()}."
|
114 |
|
115 |
# cut down scores to our task labels
|
|
|
135 |
|
136 |
# or we can show probas similar to `ZeroShotClassificationPipeline`
|
137 |
# this gives a zero-shot classification style output across labels
|
138 |
+
entail_scores = scores[:, entailment_ind]
|
139 |
entail_probas = softmax(entail_scores, dim=0)
|
140 |
print(entail_probas)
|
141 |
# tensor([7.6341e-03, 4.2873e-04, 9.9194e-01])
|