albertcalin
commited on
Commit
•
ec89ad1
1
Parent(s):
afbedd5
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2169.14 +/- 81.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a882750fc67e7226f4d5057019b6b94a45e1e3d4243a44148229bf13f0fa5a0
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f79065cac10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79065caca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79065cad30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79065cadc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f79065cae50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f79065caee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f79065caf70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79065cf040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f79065cf0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79065cf160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79065cf1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79065cf280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f79065cef00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1681572747479526966,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKqQML76Dlu/9y8cv35rmT+9Jdq/9Y3Avv+d/r17omO9y+LKv9JkzD1q0KE+tpYoQCCLgr/Zyd8+mv0APxGaHr+Cb7g/UwLTvkceEr+kl/y/0L+VP1LPq77Or54/TRXVP/rat7+9apk+YO+0v1PsPb+y/Kk/wfvzvnMHpjyYdlg/Ye6Bv5twoj6dc0C/Uredvw1Gpz9n3AW+mikbP6TsiL9Ujoy+6eUWv6LWBj96+cK+UKetv7PCpzzu8hi9yfqIP9aEnD43nAe/v0x0vjp72D4fOjI/vWqZPokaNT9T7D2/U+b4PWiPbb3nlvc+bObePvRiTb9wa7O+u2m/vq3KST84M8G/QKMuPnG17r5BUyo/YW6Sv8veGkChvS2+2hLeP/UO0z+03lpAS1aPvV97M78pA7g/AytZQFv+XD+n1AY/+tq3v71qmT5g77S/b4isP5CxCr0tjSm/LbSDvkMryj4SqJy/43x8P3dQcb6xkDa9TK+cv6Md/z5eHiE/GpsEPyNROr8y+Ei/O83aPuKeu72jIpY/G5qQv4czjr8OR1C/mGNdPihBo79c6YA/Qvqgvx86Mj+9apk+YO+0v1PsPb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuUQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+5zqPQAAAAAXk/C/AAAAAF4m+T0AAAAAwPX+PwAAAAAua3q8AAAAAKzh5T8AAAAAA4MFvgAAAADtFfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATP7HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDddZr0AAAAA0NUAwAAAAAA7c9W9AAAAACSs7D8AAAAAc62DvQAAAADUnv4/AAAAABwoED4AAAAAG2LjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsi9LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrYRy9AAAAAAfR9r8AAAAAzY+HvQAAAADA/OM/AAAAACoA97wAAAAAPg77PwAAAAD1/aw8AAAAAA4W+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2gX02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6G8zPAAAAADIIf6/AAAAACQcdz0AAAAAOnfmPwAAAADA5Qk+AAAAACvi4D8AAAAAt9KFPAAAAAASMuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLq2hoM8YCMAWyUTegDjAF0lEdAqc8uoegctHV9lChoBkdAob7fjCHh0mgHTegDaAhHQKnTLc+qzZ91fZQoaAZHQKBHIi5/b0xoB03oA2gIR0Cp1BQzDXOGdX2UKGgGR0ChNBxBE8aGaAdN6ANoCEdAqdSPR1HOKXV9lChoBkdAoRAGhkAggWgHTegDaAhHQKndhtelbeN1fZQoaAZHQKEqcrtE5QxoB03oA2gIR0Cp4l2bG3nZdX2UKGgGR0ChatP6sQumaAdN6ANoCEdAqeNSBd2Pk3V9lChoBkdAnuoLYkE9uGgHTegDaAhHQKnjy2MsH0N1fZQoaAZHQKEW7VWjoIRoB03oA2gIR0Cp6goSteUqdX2UKGgGR0CgzFsbFS88aAdN6ANoCEdAqe4d32VVxXV9lChoBkdAnKhbcwg1WWgHTegDaAhHQKnvARA8jiZ1fZQoaAZHQJ/y663AmAtoB03oA2gIR0Cp73UiILw4dX2UKGgGR0CZdqxs2vSuaAdN6ANoCEdAqfaVXYDkl3V9lChoBkdAneJycTakAWgHTegDaAhHQKn8y36Q/5d1fZQoaAZHQJfEeu4gA6xoB03oA2gIR0Cp/e85jpcHdX2UKGgGR0CcvlUbT+efaAdN6ANoCEdAqf5+qHXVb3V9lChoBkdAmHXwoG6f8WgHTegDaAhHQKoE3b1yvLZ1fZQoaAZHQJ3UHYHxBmhoB03oA2gIR0CqCRVgpjMFdX2UKGgGR0Cdrr2m51/2aAdN6ANoCEdAqgn9P557gXV9lChoBkdAnu7tu1ndwmgHTegDaAhHQKoKcfSQYDV1fZQoaAZHQKB801fmcONoB03oA2gIR0CqEKlj3EhrdX2UKGgGR0CYBIy6+WWyaAdN6ANoCEdAqhYkzQ/oq3V9lChoBkdAnfuHTZxrBWgHTegDaAhHQKoXhmaH9FZ1fZQoaAZHQJnIFpSJj2BoB03oA2gIR0CqGD5e7cwhdX2UKGgGR0Cewpgl4TsZaAdN6ANoCEdAqh+hqj8DS3V9lChoBkdAndxmpyZKF2gHTegDaAhHQKojnxlQMx51fZQoaAZHQKA3IUCaJANoB03oA2gIR0CqJIYbS7XhdX2UKGgGR0CggEJljEvTaAdN6ANoCEdAqiT/ogV45nV9lChoBkdAoPRj0jC53GgHTegDaAhHQKorJ446wMZ1fZQoaAZHQKHXdM7EHdJoB03oA2gIR0CqLzF0PpY+dX2UKGgGR0ChBshdUsFuaAdN6ANoCEdAqjBy1kUbk3V9lChoBkdAoOg7k6tDD2gHTegDaAhHQKoxIf4AS391fZQoaAZHQKDtRtWuHN5oB03oA2gIR0CqOhRDTjNqdX2UKGgGR0ChdfMvAXVLaAdN6ANoCEdAqj4ogq3EynV9lChoBkdAodCRp1zQu2gHTegDaAhHQKo/EOaOPvN1fZQoaAZHQKES/M3ZPEdoB03oA2gIR0CqP4WSU1Q7dX2UKGgGR0CgPWEAo5PuaAdN6ANoCEdAqkXmReTmn3V9lChoBkdAoWydgnc+JWgHTegDaAhHQKpJ73ai9Ix1fZQoaAZHQKIbl86V+qloB03oA2gIR0CqStZ+YtxudX2UKGgGR0ChcqFCCz1LaAdN6ANoCEdAqktSA6Mir3V9lChoBkdAoLMAUnG83GgHTegDaAhHQKpTqUoKD011fZQoaAZHQKDNSE7nxKBoB03oA2gIR0CqWQFJpWWAdX2UKGgGR0Cg5paq0dBCaAdN6ANoCEdAqlnmois4k3V9lChoBkdAnn8ZCjUNKGgHTegDaAhHQKpaXK8tf5V1fZQoaAZHQKBqNqDbrTpoB03oA2gIR0CqYHW38XN1dX2UKGgGR0CfSACaZx7zaAdN6ANoCEdAqmR/Xd0q6XV9lChoBkdAoOMPb9If82gHTegDaAhHQKplb3ztkWh1fZQoaAZHQKCpX5xiobZoB03oA2gIR0CqZerJ0W/KdX2UKGgGR0CcaSs54nndaAdN6ANoCEdAqmyGNWEK3XV9lChoBkdAmFjR4+r2g2gHTegDaAhHQKpyuPGyX2N1fZQoaAZHQJogRhttQ9BoB03oA2gIR0CqdFlspG4JdX2UKGgGR0CX4+hzeXRgaAdN6ANoCEdAqnUg7vG6w3V9lChoBkdAm/2SwB5ooWgHTegDaAhHQKp+r6D5CWx1fZQoaAZHQJyPUyHmA9VoB03oA2gIR0Cqgs9D6WPcdX2UKGgGR0Cf0jJ79hqkaAdN6ANoCEdAqoOyFPBSDXV9lChoBkdAoAR3Pomoi2gHTegDaAhHQKqEI3PzFuN1fZQoaAZHQKDqXfa6BiFoB03oA2gIR0CqikWcriEQdX2UKGgGR0ChjtzxgAp8aAdN6ANoCEdAqo5HChvitXV9lChoBkdAohLzrxAjZGgHTegDaAhHQKqPMFRpDeF1fZQoaAZHQKEkzwrDqGFoB03oA2gIR0Cqj6OktVaPdX2UKGgGR0CiMlJLVWjoaAdN6ANoCEdAqpfVEkSmInV9lChoBkdAoLrLNGEwnGgHTegDaAhHQKqdHHEMspZ1fZQoaAZHQKFKsOfdyktoB03oA2gIR0Cqng6kZaV2dX2UKGgGR0ChoLdLQHAzaAdN6ANoCEdAqp6F4FA3UHV9lChoBkdAoaPjzVc2SGgHTegDaAhHQKqkw7PIGQl1fZQoaAZHQJk/KlxffGdoB03oA2gIR0CqqN1PnB+GdX2UKGgGR0CTZzBzV+ZxaAdN6ANoCEdAqqnGsq8UVXV9lChoBkdAoHbksFt8/mgHTegDaAhHQKqqPPXTVlR1fZQoaAZHQJPTPseGO+9oB03oA2gIR0CqsOl5GBnSdX2UKGgGR0CaLnZezD4yaAdN6ANoCEdAqrcCo60Y0nV9lChoBkdAniirXYlIE2gHTegDaAhHQKq4Zqnm7rd1fZQoaAZHQJh/d9hJAdJoB03oA2gIR0CquR5BC2MLdX2UKGgGR0CfLdMINVinaAdN6ANoCEdAqr/HL5h0AHV9lChoBkdAoLvAuXeFc2gHTegDaAhHQKrDygnMMZx1fZQoaAZHQJ99vB68g6loB03oA2gIR0CqxKyKWLP2dX2UKGgGR0CgpwotthuwaAdN6ANoCEdAqsUfWOIZZXV9lChoBkdAoEYsoWpIc2gHTegDaAhHQKrLRfbblBB1fZQoaAZHQKEB7JxvNvBoB03oA2gIR0Cq0Eh0IToMdX2UKGgGR0Ch6do/A0sOaAdN6ANoCEdAqtGeOIZZS3V9lChoBkdAomiri++M62gHTegDaAhHQKrSV93KSxJ1fZQoaAZHQKBgEOmzjWFoB03oA2gIR0Cq2lMNUfgadX2UKGgGR0ChvM1IiC8OaAdN6ANoCEdAqt5ebVjI73V9lChoBkdAoi4Huogmq2gHTegDaAhHQKrfR+YtxuN1fZQoaAZHQKGwHBqKxcFoB03oA2gIR0Cq379IwudxdX2UKGgGR0CiiYDCxeLOaAdN6ANoCEdAquYQjKPn0XV9lChoBkdAoPEfxJ/XoWgHTegDaAhHQKrqO8SPEKp1fZQoaAZHQKFL7mZE2HdoB03oA2gIR0Cq6yen62v0dX2UKGgGR0Ch3S3rdFfBaAdN6ANoCEdAquvQUzsQd3V9lChoBkdAlFCGyC4Bm2gHTegDaAhHQKr1MRujynV1fZQoaAZHQJzf7nFHavloB03oA2gIR0Cq+TP5gw49dX2UKGgGR0CfqppZfUnYaAdN6ANoCEdAqvoh4+r2g3V9lChoBkdAnwAkojOcD2gHTegDaAhHQKr6oB/7SAp1fZQoaAZHQJ7Y7lPrOZ9oB03oA2gIR0CrAPPRZ2ZBdX2UKGgGR0CfkTpt78ekaAdN6ANoCEdAqwUeQCCBgHV9lChoBkdAoGyMPSUkfWgHTegDaAhHQKsGD1AZ88d1fZQoaAZHQKAvCgUUO/doB03oA2gIR0CrBoRz7uUmdX2UKGgGR0CgRYq1og3caAdN6ANoCEdAqw5dU0elsXV9lChoBkdAoMkPBi1Aq2gHTegDaAhHQKsT/nU2DQJ1fZQoaAZHQKA3G2oegctoB03oA2gIR0CrFOsLfDUFdX2UKGgGR0CiVm2Ifr8jaAdN6ANoCEdAqxVc0aZQYXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7180a8785b2295289b8f2c0733d6aa1c6b88075d7c050b351a85d99adb2cc9a3
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e930729967155d167a9ffbf3a198f9fbbac5c41dec0879fa6c410fd5d6a6f11
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79065cac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79065caca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79065cad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79065cadc0>", "_build": "<function ActorCriticPolicy._build at 0x7f79065cae50>", "forward": "<function ActorCriticPolicy.forward at 0x7f79065caee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f79065caf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79065cf040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79065cf0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79065cf160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79065cf1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79065cf280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f79065cef00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681572747479526966, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKqQML76Dlu/9y8cv35rmT+9Jdq/9Y3Avv+d/r17omO9y+LKv9JkzD1q0KE+tpYoQCCLgr/Zyd8+mv0APxGaHr+Cb7g/UwLTvkceEr+kl/y/0L+VP1LPq77Or54/TRXVP/rat7+9apk+YO+0v1PsPb+y/Kk/wfvzvnMHpjyYdlg/Ye6Bv5twoj6dc0C/Uredvw1Gpz9n3AW+mikbP6TsiL9Ujoy+6eUWv6LWBj96+cK+UKetv7PCpzzu8hi9yfqIP9aEnD43nAe/v0x0vjp72D4fOjI/vWqZPokaNT9T7D2/U+b4PWiPbb3nlvc+bObePvRiTb9wa7O+u2m/vq3KST84M8G/QKMuPnG17r5BUyo/YW6Sv8veGkChvS2+2hLeP/UO0z+03lpAS1aPvV97M78pA7g/AytZQFv+XD+n1AY/+tq3v71qmT5g77S/b4isP5CxCr0tjSm/LbSDvkMryj4SqJy/43x8P3dQcb6xkDa9TK+cv6Md/z5eHiE/GpsEPyNROr8y+Ei/O83aPuKeu72jIpY/G5qQv4czjr8OR1C/mGNdPihBo79c6YA/Qvqgvx86Mj+9apk+YO+0v1PsPb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuUQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+5zqPQAAAAAXk/C/AAAAAF4m+T0AAAAAwPX+PwAAAAAua3q8AAAAAKzh5T8AAAAAA4MFvgAAAADtFfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATP7HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDddZr0AAAAA0NUAwAAAAAA7c9W9AAAAACSs7D8AAAAAc62DvQAAAADUnv4/AAAAABwoED4AAAAAG2LjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsi9LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrYRy9AAAAAAfR9r8AAAAAzY+HvQAAAADA/OM/AAAAACoA97wAAAAAPg77PwAAAAD1/aw8AAAAAA4W+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2gX02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6G8zPAAAAADIIf6/AAAAACQcdz0AAAAAOnfmPwAAAADA5Qk+AAAAACvi4D8AAAAAt9KFPAAAAAASMuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLq2hoM8YCMAWyUTegDjAF0lEdAqc8uoegctHV9lChoBkdAob7fjCHh0mgHTegDaAhHQKnTLc+qzZ91fZQoaAZHQKBHIi5/b0xoB03oA2gIR0Cp1BQzDXOGdX2UKGgGR0ChNBxBE8aGaAdN6ANoCEdAqdSPR1HOKXV9lChoBkdAoRAGhkAggWgHTegDaAhHQKndhtelbeN1fZQoaAZHQKEqcrtE5QxoB03oA2gIR0Cp4l2bG3nZdX2UKGgGR0ChatP6sQumaAdN6ANoCEdAqeNSBd2Pk3V9lChoBkdAnuoLYkE9uGgHTegDaAhHQKnjy2MsH0N1fZQoaAZHQKEW7VWjoIRoB03oA2gIR0Cp6goSteUqdX2UKGgGR0CgzFsbFS88aAdN6ANoCEdAqe4d32VVxXV9lChoBkdAnKhbcwg1WWgHTegDaAhHQKnvARA8jiZ1fZQoaAZHQJ/y663AmAtoB03oA2gIR0Cp73UiILw4dX2UKGgGR0CZdqxs2vSuaAdN6ANoCEdAqfaVXYDkl3V9lChoBkdAneJycTakAWgHTegDaAhHQKn8y36Q/5d1fZQoaAZHQJfEeu4gA6xoB03oA2gIR0Cp/e85jpcHdX2UKGgGR0CcvlUbT+efaAdN6ANoCEdAqf5+qHXVb3V9lChoBkdAmHXwoG6f8WgHTegDaAhHQKoE3b1yvLZ1fZQoaAZHQJ3UHYHxBmhoB03oA2gIR0CqCRVgpjMFdX2UKGgGR0Cdrr2m51/2aAdN6ANoCEdAqgn9P557gXV9lChoBkdAnu7tu1ndwmgHTegDaAhHQKoKcfSQYDV1fZQoaAZHQKB801fmcONoB03oA2gIR0CqEKlj3EhrdX2UKGgGR0CYBIy6+WWyaAdN6ANoCEdAqhYkzQ/oq3V9lChoBkdAnfuHTZxrBWgHTegDaAhHQKoXhmaH9FZ1fZQoaAZHQJnIFpSJj2BoB03oA2gIR0CqGD5e7cwhdX2UKGgGR0Cewpgl4TsZaAdN6ANoCEdAqh+hqj8DS3V9lChoBkdAndxmpyZKF2gHTegDaAhHQKojnxlQMx51fZQoaAZHQKA3IUCaJANoB03oA2gIR0CqJIYbS7XhdX2UKGgGR0CggEJljEvTaAdN6ANoCEdAqiT/ogV45nV9lChoBkdAoPRj0jC53GgHTegDaAhHQKorJ446wMZ1fZQoaAZHQKHXdM7EHdJoB03oA2gIR0CqLzF0PpY+dX2UKGgGR0ChBshdUsFuaAdN6ANoCEdAqjBy1kUbk3V9lChoBkdAoOg7k6tDD2gHTegDaAhHQKoxIf4AS391fZQoaAZHQKDtRtWuHN5oB03oA2gIR0CqOhRDTjNqdX2UKGgGR0ChdfMvAXVLaAdN6ANoCEdAqj4ogq3EynV9lChoBkdAodCRp1zQu2gHTegDaAhHQKo/EOaOPvN1fZQoaAZHQKES/M3ZPEdoB03oA2gIR0CqP4WSU1Q7dX2UKGgGR0CgPWEAo5PuaAdN6ANoCEdAqkXmReTmn3V9lChoBkdAoWydgnc+JWgHTegDaAhHQKpJ73ai9Ix1fZQoaAZHQKIbl86V+qloB03oA2gIR0CqStZ+YtxudX2UKGgGR0ChcqFCCz1LaAdN6ANoCEdAqktSA6Mir3V9lChoBkdAoLMAUnG83GgHTegDaAhHQKpTqUoKD011fZQoaAZHQKDNSE7nxKBoB03oA2gIR0CqWQFJpWWAdX2UKGgGR0Cg5paq0dBCaAdN6ANoCEdAqlnmois4k3V9lChoBkdAnn8ZCjUNKGgHTegDaAhHQKpaXK8tf5V1fZQoaAZHQKBqNqDbrTpoB03oA2gIR0CqYHW38XN1dX2UKGgGR0CfSACaZx7zaAdN6ANoCEdAqmR/Xd0q6XV9lChoBkdAoOMPb9If82gHTegDaAhHQKplb3ztkWh1fZQoaAZHQKCpX5xiobZoB03oA2gIR0CqZerJ0W/KdX2UKGgGR0CcaSs54nndaAdN6ANoCEdAqmyGNWEK3XV9lChoBkdAmFjR4+r2g2gHTegDaAhHQKpyuPGyX2N1fZQoaAZHQJogRhttQ9BoB03oA2gIR0CqdFlspG4JdX2UKGgGR0CX4+hzeXRgaAdN6ANoCEdAqnUg7vG6w3V9lChoBkdAm/2SwB5ooWgHTegDaAhHQKp+r6D5CWx1fZQoaAZHQJyPUyHmA9VoB03oA2gIR0Cqgs9D6WPcdX2UKGgGR0Cf0jJ79hqkaAdN6ANoCEdAqoOyFPBSDXV9lChoBkdAoAR3Pomoi2gHTegDaAhHQKqEI3PzFuN1fZQoaAZHQKDqXfa6BiFoB03oA2gIR0CqikWcriEQdX2UKGgGR0ChjtzxgAp8aAdN6ANoCEdAqo5HChvitXV9lChoBkdAohLzrxAjZGgHTegDaAhHQKqPMFRpDeF1fZQoaAZHQKEkzwrDqGFoB03oA2gIR0Cqj6OktVaPdX2UKGgGR0CiMlJLVWjoaAdN6ANoCEdAqpfVEkSmInV9lChoBkdAoLrLNGEwnGgHTegDaAhHQKqdHHEMspZ1fZQoaAZHQKFKsOfdyktoB03oA2gIR0Cqng6kZaV2dX2UKGgGR0ChoLdLQHAzaAdN6ANoCEdAqp6F4FA3UHV9lChoBkdAoaPjzVc2SGgHTegDaAhHQKqkw7PIGQl1fZQoaAZHQJk/KlxffGdoB03oA2gIR0CqqN1PnB+GdX2UKGgGR0CTZzBzV+ZxaAdN6ANoCEdAqqnGsq8UVXV9lChoBkdAoHbksFt8/mgHTegDaAhHQKqqPPXTVlR1fZQoaAZHQJPTPseGO+9oB03oA2gIR0CqsOl5GBnSdX2UKGgGR0CaLnZezD4yaAdN6ANoCEdAqrcCo60Y0nV9lChoBkdAniirXYlIE2gHTegDaAhHQKq4Zqnm7rd1fZQoaAZHQJh/d9hJAdJoB03oA2gIR0CquR5BC2MLdX2UKGgGR0CfLdMINVinaAdN6ANoCEdAqr/HL5h0AHV9lChoBkdAoLvAuXeFc2gHTegDaAhHQKrDygnMMZx1fZQoaAZHQJ99vB68g6loB03oA2gIR0CqxKyKWLP2dX2UKGgGR0CgpwotthuwaAdN6ANoCEdAqsUfWOIZZXV9lChoBkdAoEYsoWpIc2gHTegDaAhHQKrLRfbblBB1fZQoaAZHQKEB7JxvNvBoB03oA2gIR0Cq0Eh0IToMdX2UKGgGR0Ch6do/A0sOaAdN6ANoCEdAqtGeOIZZS3V9lChoBkdAomiri++M62gHTegDaAhHQKrSV93KSxJ1fZQoaAZHQKBgEOmzjWFoB03oA2gIR0Cq2lMNUfgadX2UKGgGR0ChvM1IiC8OaAdN6ANoCEdAqt5ebVjI73V9lChoBkdAoi4Huogmq2gHTegDaAhHQKrfR+YtxuN1fZQoaAZHQKGwHBqKxcFoB03oA2gIR0Cq379IwudxdX2UKGgGR0CiiYDCxeLOaAdN6ANoCEdAquYQjKPn0XV9lChoBkdAoPEfxJ/XoWgHTegDaAhHQKrqO8SPEKp1fZQoaAZHQKFL7mZE2HdoB03oA2gIR0Cq6yen62v0dX2UKGgGR0Ch3S3rdFfBaAdN6ANoCEdAquvQUzsQd3V9lChoBkdAlFCGyC4Bm2gHTegDaAhHQKr1MRujynV1fZQoaAZHQJzf7nFHavloB03oA2gIR0Cq+TP5gw49dX2UKGgGR0CfqppZfUnYaAdN6ANoCEdAqvoh4+r2g3V9lChoBkdAnwAkojOcD2gHTegDaAhHQKr6oB/7SAp1fZQoaAZHQJ7Y7lPrOZ9oB03oA2gIR0CrAPPRZ2ZBdX2UKGgGR0CfkTpt78ekaAdN6ANoCEdAqwUeQCCBgHV9lChoBkdAoGyMPSUkfWgHTegDaAhHQKsGD1AZ88d1fZQoaAZHQKAvCgUUO/doB03oA2gIR0CrBoRz7uUmdX2UKGgGR0CgRYq1og3caAdN6ANoCEdAqw5dU0elsXV9lChoBkdAoMkPBi1Aq2gHTegDaAhHQKsT/nU2DQJ1fZQoaAZHQKA3G2oegctoB03oA2gIR0CrFOsLfDUFdX2UKGgGR0CiVm2Ifr8jaAdN6ANoCEdAqxVc0aZQYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f9dc79adfb568a51d92b6577974f547d8a016d36f0769e49d715ec50ecd21f
|
3 |
+
size 1251404
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2169.142027966259, "std_reward": 81.3062788991003, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-15T16:30:26.676274"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:408be2631dfc10460f678c52686f903472a63048e29997d1fd3c903305cb11e9
|
3 |
+
size 2170
|