albertcalin commited on
Commit
ec89ad1
1 Parent(s): afbedd5

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2169.14 +/- 81.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a882750fc67e7226f4d5057019b6b94a45e1e3d4243a44148229bf13f0fa5a0
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79065cac10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79065caca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79065cad30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79065cadc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f79065cae50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f79065caee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f79065caf70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79065cf040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f79065cf0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79065cf160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79065cf1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79065cf280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f79065cef00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681572747479526966,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKqQML76Dlu/9y8cv35rmT+9Jdq/9Y3Avv+d/r17omO9y+LKv9JkzD1q0KE+tpYoQCCLgr/Zyd8+mv0APxGaHr+Cb7g/UwLTvkceEr+kl/y/0L+VP1LPq77Or54/TRXVP/rat7+9apk+YO+0v1PsPb+y/Kk/wfvzvnMHpjyYdlg/Ye6Bv5twoj6dc0C/Uredvw1Gpz9n3AW+mikbP6TsiL9Ujoy+6eUWv6LWBj96+cK+UKetv7PCpzzu8hi9yfqIP9aEnD43nAe/v0x0vjp72D4fOjI/vWqZPokaNT9T7D2/U+b4PWiPbb3nlvc+bObePvRiTb9wa7O+u2m/vq3KST84M8G/QKMuPnG17r5BUyo/YW6Sv8veGkChvS2+2hLeP/UO0z+03lpAS1aPvV97M78pA7g/AytZQFv+XD+n1AY/+tq3v71qmT5g77S/b4isP5CxCr0tjSm/LbSDvkMryj4SqJy/43x8P3dQcb6xkDa9TK+cv6Md/z5eHiE/GpsEPyNROr8y+Ei/O83aPuKeu72jIpY/G5qQv4czjr8OR1C/mGNdPihBo79c6YA/Qvqgvx86Mj+9apk+YO+0v1PsPb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuUQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+5zqPQAAAAAXk/C/AAAAAF4m+T0AAAAAwPX+PwAAAAAua3q8AAAAAKzh5T8AAAAAA4MFvgAAAADtFfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATP7HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDddZr0AAAAA0NUAwAAAAAA7c9W9AAAAACSs7D8AAAAAc62DvQAAAADUnv4/AAAAABwoED4AAAAAG2LjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsi9LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrYRy9AAAAAAfR9r8AAAAAzY+HvQAAAADA/OM/AAAAACoA97wAAAAAPg77PwAAAAD1/aw8AAAAAA4W+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2gX02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6G8zPAAAAADIIf6/AAAAACQcdz0AAAAAOnfmPwAAAADA5Qk+AAAAACvi4D8AAAAAt9KFPAAAAAASMuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLq2hoM8YCMAWyUTegDjAF0lEdAqc8uoegctHV9lChoBkdAob7fjCHh0mgHTegDaAhHQKnTLc+qzZ91fZQoaAZHQKBHIi5/b0xoB03oA2gIR0Cp1BQzDXOGdX2UKGgGR0ChNBxBE8aGaAdN6ANoCEdAqdSPR1HOKXV9lChoBkdAoRAGhkAggWgHTegDaAhHQKndhtelbeN1fZQoaAZHQKEqcrtE5QxoB03oA2gIR0Cp4l2bG3nZdX2UKGgGR0ChatP6sQumaAdN6ANoCEdAqeNSBd2Pk3V9lChoBkdAnuoLYkE9uGgHTegDaAhHQKnjy2MsH0N1fZQoaAZHQKEW7VWjoIRoB03oA2gIR0Cp6goSteUqdX2UKGgGR0CgzFsbFS88aAdN6ANoCEdAqe4d32VVxXV9lChoBkdAnKhbcwg1WWgHTegDaAhHQKnvARA8jiZ1fZQoaAZHQJ/y663AmAtoB03oA2gIR0Cp73UiILw4dX2UKGgGR0CZdqxs2vSuaAdN6ANoCEdAqfaVXYDkl3V9lChoBkdAneJycTakAWgHTegDaAhHQKn8y36Q/5d1fZQoaAZHQJfEeu4gA6xoB03oA2gIR0Cp/e85jpcHdX2UKGgGR0CcvlUbT+efaAdN6ANoCEdAqf5+qHXVb3V9lChoBkdAmHXwoG6f8WgHTegDaAhHQKoE3b1yvLZ1fZQoaAZHQJ3UHYHxBmhoB03oA2gIR0CqCRVgpjMFdX2UKGgGR0Cdrr2m51/2aAdN6ANoCEdAqgn9P557gXV9lChoBkdAnu7tu1ndwmgHTegDaAhHQKoKcfSQYDV1fZQoaAZHQKB801fmcONoB03oA2gIR0CqEKlj3EhrdX2UKGgGR0CYBIy6+WWyaAdN6ANoCEdAqhYkzQ/oq3V9lChoBkdAnfuHTZxrBWgHTegDaAhHQKoXhmaH9FZ1fZQoaAZHQJnIFpSJj2BoB03oA2gIR0CqGD5e7cwhdX2UKGgGR0Cewpgl4TsZaAdN6ANoCEdAqh+hqj8DS3V9lChoBkdAndxmpyZKF2gHTegDaAhHQKojnxlQMx51fZQoaAZHQKA3IUCaJANoB03oA2gIR0CqJIYbS7XhdX2UKGgGR0CggEJljEvTaAdN6ANoCEdAqiT/ogV45nV9lChoBkdAoPRj0jC53GgHTegDaAhHQKorJ446wMZ1fZQoaAZHQKHXdM7EHdJoB03oA2gIR0CqLzF0PpY+dX2UKGgGR0ChBshdUsFuaAdN6ANoCEdAqjBy1kUbk3V9lChoBkdAoOg7k6tDD2gHTegDaAhHQKoxIf4AS391fZQoaAZHQKDtRtWuHN5oB03oA2gIR0CqOhRDTjNqdX2UKGgGR0ChdfMvAXVLaAdN6ANoCEdAqj4ogq3EynV9lChoBkdAodCRp1zQu2gHTegDaAhHQKo/EOaOPvN1fZQoaAZHQKES/M3ZPEdoB03oA2gIR0CqP4WSU1Q7dX2UKGgGR0CgPWEAo5PuaAdN6ANoCEdAqkXmReTmn3V9lChoBkdAoWydgnc+JWgHTegDaAhHQKpJ73ai9Ix1fZQoaAZHQKIbl86V+qloB03oA2gIR0CqStZ+YtxudX2UKGgGR0ChcqFCCz1LaAdN6ANoCEdAqktSA6Mir3V9lChoBkdAoLMAUnG83GgHTegDaAhHQKpTqUoKD011fZQoaAZHQKDNSE7nxKBoB03oA2gIR0CqWQFJpWWAdX2UKGgGR0Cg5paq0dBCaAdN6ANoCEdAqlnmois4k3V9lChoBkdAnn8ZCjUNKGgHTegDaAhHQKpaXK8tf5V1fZQoaAZHQKBqNqDbrTpoB03oA2gIR0CqYHW38XN1dX2UKGgGR0CfSACaZx7zaAdN6ANoCEdAqmR/Xd0q6XV9lChoBkdAoOMPb9If82gHTegDaAhHQKplb3ztkWh1fZQoaAZHQKCpX5xiobZoB03oA2gIR0CqZerJ0W/KdX2UKGgGR0CcaSs54nndaAdN6ANoCEdAqmyGNWEK3XV9lChoBkdAmFjR4+r2g2gHTegDaAhHQKpyuPGyX2N1fZQoaAZHQJogRhttQ9BoB03oA2gIR0CqdFlspG4JdX2UKGgGR0CX4+hzeXRgaAdN6ANoCEdAqnUg7vG6w3V9lChoBkdAm/2SwB5ooWgHTegDaAhHQKp+r6D5CWx1fZQoaAZHQJyPUyHmA9VoB03oA2gIR0Cqgs9D6WPcdX2UKGgGR0Cf0jJ79hqkaAdN6ANoCEdAqoOyFPBSDXV9lChoBkdAoAR3Pomoi2gHTegDaAhHQKqEI3PzFuN1fZQoaAZHQKDqXfa6BiFoB03oA2gIR0CqikWcriEQdX2UKGgGR0ChjtzxgAp8aAdN6ANoCEdAqo5HChvitXV9lChoBkdAohLzrxAjZGgHTegDaAhHQKqPMFRpDeF1fZQoaAZHQKEkzwrDqGFoB03oA2gIR0Cqj6OktVaPdX2UKGgGR0CiMlJLVWjoaAdN6ANoCEdAqpfVEkSmInV9lChoBkdAoLrLNGEwnGgHTegDaAhHQKqdHHEMspZ1fZQoaAZHQKFKsOfdyktoB03oA2gIR0Cqng6kZaV2dX2UKGgGR0ChoLdLQHAzaAdN6ANoCEdAqp6F4FA3UHV9lChoBkdAoaPjzVc2SGgHTegDaAhHQKqkw7PIGQl1fZQoaAZHQJk/KlxffGdoB03oA2gIR0CqqN1PnB+GdX2UKGgGR0CTZzBzV+ZxaAdN6ANoCEdAqqnGsq8UVXV9lChoBkdAoHbksFt8/mgHTegDaAhHQKqqPPXTVlR1fZQoaAZHQJPTPseGO+9oB03oA2gIR0CqsOl5GBnSdX2UKGgGR0CaLnZezD4yaAdN6ANoCEdAqrcCo60Y0nV9lChoBkdAniirXYlIE2gHTegDaAhHQKq4Zqnm7rd1fZQoaAZHQJh/d9hJAdJoB03oA2gIR0CquR5BC2MLdX2UKGgGR0CfLdMINVinaAdN6ANoCEdAqr/HL5h0AHV9lChoBkdAoLvAuXeFc2gHTegDaAhHQKrDygnMMZx1fZQoaAZHQJ99vB68g6loB03oA2gIR0CqxKyKWLP2dX2UKGgGR0CgpwotthuwaAdN6ANoCEdAqsUfWOIZZXV9lChoBkdAoEYsoWpIc2gHTegDaAhHQKrLRfbblBB1fZQoaAZHQKEB7JxvNvBoB03oA2gIR0Cq0Eh0IToMdX2UKGgGR0Ch6do/A0sOaAdN6ANoCEdAqtGeOIZZS3V9lChoBkdAomiri++M62gHTegDaAhHQKrSV93KSxJ1fZQoaAZHQKBgEOmzjWFoB03oA2gIR0Cq2lMNUfgadX2UKGgGR0ChvM1IiC8OaAdN6ANoCEdAqt5ebVjI73V9lChoBkdAoi4Huogmq2gHTegDaAhHQKrfR+YtxuN1fZQoaAZHQKGwHBqKxcFoB03oA2gIR0Cq379IwudxdX2UKGgGR0CiiYDCxeLOaAdN6ANoCEdAquYQjKPn0XV9lChoBkdAoPEfxJ/XoWgHTegDaAhHQKrqO8SPEKp1fZQoaAZHQKFL7mZE2HdoB03oA2gIR0Cq6yen62v0dX2UKGgGR0Ch3S3rdFfBaAdN6ANoCEdAquvQUzsQd3V9lChoBkdAlFCGyC4Bm2gHTegDaAhHQKr1MRujynV1fZQoaAZHQJzf7nFHavloB03oA2gIR0Cq+TP5gw49dX2UKGgGR0CfqppZfUnYaAdN6ANoCEdAqvoh4+r2g3V9lChoBkdAnwAkojOcD2gHTegDaAhHQKr6oB/7SAp1fZQoaAZHQJ7Y7lPrOZ9oB03oA2gIR0CrAPPRZ2ZBdX2UKGgGR0CfkTpt78ekaAdN6ANoCEdAqwUeQCCBgHV9lChoBkdAoGyMPSUkfWgHTegDaAhHQKsGD1AZ88d1fZQoaAZHQKAvCgUUO/doB03oA2gIR0CrBoRz7uUmdX2UKGgGR0CgRYq1og3caAdN6ANoCEdAqw5dU0elsXV9lChoBkdAoMkPBi1Aq2gHTegDaAhHQKsT/nU2DQJ1fZQoaAZHQKA3G2oegctoB03oA2gIR0CrFOsLfDUFdX2UKGgGR0CiVm2Ifr8jaAdN6ANoCEdAqxVc0aZQYXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7180a8785b2295289b8f2c0733d6aa1c6b88075d7c050b351a85d99adb2cc9a3
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e930729967155d167a9ffbf3a198f9fbbac5c41dec0879fa6c410fd5d6a6f11
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79065cac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79065caca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79065cad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79065cadc0>", "_build": "<function ActorCriticPolicy._build at 0x7f79065cae50>", "forward": "<function ActorCriticPolicy.forward at 0x7f79065caee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f79065caf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79065cf040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79065cf0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79065cf160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79065cf1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79065cf280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f79065cef00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681572747479526966, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKqQML76Dlu/9y8cv35rmT+9Jdq/9Y3Avv+d/r17omO9y+LKv9JkzD1q0KE+tpYoQCCLgr/Zyd8+mv0APxGaHr+Cb7g/UwLTvkceEr+kl/y/0L+VP1LPq77Or54/TRXVP/rat7+9apk+YO+0v1PsPb+y/Kk/wfvzvnMHpjyYdlg/Ye6Bv5twoj6dc0C/Uredvw1Gpz9n3AW+mikbP6TsiL9Ujoy+6eUWv6LWBj96+cK+UKetv7PCpzzu8hi9yfqIP9aEnD43nAe/v0x0vjp72D4fOjI/vWqZPokaNT9T7D2/U+b4PWiPbb3nlvc+bObePvRiTb9wa7O+u2m/vq3KST84M8G/QKMuPnG17r5BUyo/YW6Sv8veGkChvS2+2hLeP/UO0z+03lpAS1aPvV97M78pA7g/AytZQFv+XD+n1AY/+tq3v71qmT5g77S/b4isP5CxCr0tjSm/LbSDvkMryj4SqJy/43x8P3dQcb6xkDa9TK+cv6Md/z5eHiE/GpsEPyNROr8y+Ei/O83aPuKeu72jIpY/G5qQv4czjr8OR1C/mGNdPihBo79c6YA/Qvqgvx86Mj+9apk+YO+0v1PsPb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuUQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+5zqPQAAAAAXk/C/AAAAAF4m+T0AAAAAwPX+PwAAAAAua3q8AAAAAKzh5T8AAAAAA4MFvgAAAADtFfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATP7HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDddZr0AAAAA0NUAwAAAAAA7c9W9AAAAACSs7D8AAAAAc62DvQAAAADUnv4/AAAAABwoED4AAAAAG2LjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsi9LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrYRy9AAAAAAfR9r8AAAAAzY+HvQAAAADA/OM/AAAAACoA97wAAAAAPg77PwAAAAD1/aw8AAAAAA4W+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2gX02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6G8zPAAAAADIIf6/AAAAACQcdz0AAAAAOnfmPwAAAADA5Qk+AAAAACvi4D8AAAAAt9KFPAAAAAASMuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLq2hoM8YCMAWyUTegDjAF0lEdAqc8uoegctHV9lChoBkdAob7fjCHh0mgHTegDaAhHQKnTLc+qzZ91fZQoaAZHQKBHIi5/b0xoB03oA2gIR0Cp1BQzDXOGdX2UKGgGR0ChNBxBE8aGaAdN6ANoCEdAqdSPR1HOKXV9lChoBkdAoRAGhkAggWgHTegDaAhHQKndhtelbeN1fZQoaAZHQKEqcrtE5QxoB03oA2gIR0Cp4l2bG3nZdX2UKGgGR0ChatP6sQumaAdN6ANoCEdAqeNSBd2Pk3V9lChoBkdAnuoLYkE9uGgHTegDaAhHQKnjy2MsH0N1fZQoaAZHQKEW7VWjoIRoB03oA2gIR0Cp6goSteUqdX2UKGgGR0CgzFsbFS88aAdN6ANoCEdAqe4d32VVxXV9lChoBkdAnKhbcwg1WWgHTegDaAhHQKnvARA8jiZ1fZQoaAZHQJ/y663AmAtoB03oA2gIR0Cp73UiILw4dX2UKGgGR0CZdqxs2vSuaAdN6ANoCEdAqfaVXYDkl3V9lChoBkdAneJycTakAWgHTegDaAhHQKn8y36Q/5d1fZQoaAZHQJfEeu4gA6xoB03oA2gIR0Cp/e85jpcHdX2UKGgGR0CcvlUbT+efaAdN6ANoCEdAqf5+qHXVb3V9lChoBkdAmHXwoG6f8WgHTegDaAhHQKoE3b1yvLZ1fZQoaAZHQJ3UHYHxBmhoB03oA2gIR0CqCRVgpjMFdX2UKGgGR0Cdrr2m51/2aAdN6ANoCEdAqgn9P557gXV9lChoBkdAnu7tu1ndwmgHTegDaAhHQKoKcfSQYDV1fZQoaAZHQKB801fmcONoB03oA2gIR0CqEKlj3EhrdX2UKGgGR0CYBIy6+WWyaAdN6ANoCEdAqhYkzQ/oq3V9lChoBkdAnfuHTZxrBWgHTegDaAhHQKoXhmaH9FZ1fZQoaAZHQJnIFpSJj2BoB03oA2gIR0CqGD5e7cwhdX2UKGgGR0Cewpgl4TsZaAdN6ANoCEdAqh+hqj8DS3V9lChoBkdAndxmpyZKF2gHTegDaAhHQKojnxlQMx51fZQoaAZHQKA3IUCaJANoB03oA2gIR0CqJIYbS7XhdX2UKGgGR0CggEJljEvTaAdN6ANoCEdAqiT/ogV45nV9lChoBkdAoPRj0jC53GgHTegDaAhHQKorJ446wMZ1fZQoaAZHQKHXdM7EHdJoB03oA2gIR0CqLzF0PpY+dX2UKGgGR0ChBshdUsFuaAdN6ANoCEdAqjBy1kUbk3V9lChoBkdAoOg7k6tDD2gHTegDaAhHQKoxIf4AS391fZQoaAZHQKDtRtWuHN5oB03oA2gIR0CqOhRDTjNqdX2UKGgGR0ChdfMvAXVLaAdN6ANoCEdAqj4ogq3EynV9lChoBkdAodCRp1zQu2gHTegDaAhHQKo/EOaOPvN1fZQoaAZHQKES/M3ZPEdoB03oA2gIR0CqP4WSU1Q7dX2UKGgGR0CgPWEAo5PuaAdN6ANoCEdAqkXmReTmn3V9lChoBkdAoWydgnc+JWgHTegDaAhHQKpJ73ai9Ix1fZQoaAZHQKIbl86V+qloB03oA2gIR0CqStZ+YtxudX2UKGgGR0ChcqFCCz1LaAdN6ANoCEdAqktSA6Mir3V9lChoBkdAoLMAUnG83GgHTegDaAhHQKpTqUoKD011fZQoaAZHQKDNSE7nxKBoB03oA2gIR0CqWQFJpWWAdX2UKGgGR0Cg5paq0dBCaAdN6ANoCEdAqlnmois4k3V9lChoBkdAnn8ZCjUNKGgHTegDaAhHQKpaXK8tf5V1fZQoaAZHQKBqNqDbrTpoB03oA2gIR0CqYHW38XN1dX2UKGgGR0CfSACaZx7zaAdN6ANoCEdAqmR/Xd0q6XV9lChoBkdAoOMPb9If82gHTegDaAhHQKplb3ztkWh1fZQoaAZHQKCpX5xiobZoB03oA2gIR0CqZerJ0W/KdX2UKGgGR0CcaSs54nndaAdN6ANoCEdAqmyGNWEK3XV9lChoBkdAmFjR4+r2g2gHTegDaAhHQKpyuPGyX2N1fZQoaAZHQJogRhttQ9BoB03oA2gIR0CqdFlspG4JdX2UKGgGR0CX4+hzeXRgaAdN6ANoCEdAqnUg7vG6w3V9lChoBkdAm/2SwB5ooWgHTegDaAhHQKp+r6D5CWx1fZQoaAZHQJyPUyHmA9VoB03oA2gIR0Cqgs9D6WPcdX2UKGgGR0Cf0jJ79hqkaAdN6ANoCEdAqoOyFPBSDXV9lChoBkdAoAR3Pomoi2gHTegDaAhHQKqEI3PzFuN1fZQoaAZHQKDqXfa6BiFoB03oA2gIR0CqikWcriEQdX2UKGgGR0ChjtzxgAp8aAdN6ANoCEdAqo5HChvitXV9lChoBkdAohLzrxAjZGgHTegDaAhHQKqPMFRpDeF1fZQoaAZHQKEkzwrDqGFoB03oA2gIR0Cqj6OktVaPdX2UKGgGR0CiMlJLVWjoaAdN6ANoCEdAqpfVEkSmInV9lChoBkdAoLrLNGEwnGgHTegDaAhHQKqdHHEMspZ1fZQoaAZHQKFKsOfdyktoB03oA2gIR0Cqng6kZaV2dX2UKGgGR0ChoLdLQHAzaAdN6ANoCEdAqp6F4FA3UHV9lChoBkdAoaPjzVc2SGgHTegDaAhHQKqkw7PIGQl1fZQoaAZHQJk/KlxffGdoB03oA2gIR0CqqN1PnB+GdX2UKGgGR0CTZzBzV+ZxaAdN6ANoCEdAqqnGsq8UVXV9lChoBkdAoHbksFt8/mgHTegDaAhHQKqqPPXTVlR1fZQoaAZHQJPTPseGO+9oB03oA2gIR0CqsOl5GBnSdX2UKGgGR0CaLnZezD4yaAdN6ANoCEdAqrcCo60Y0nV9lChoBkdAniirXYlIE2gHTegDaAhHQKq4Zqnm7rd1fZQoaAZHQJh/d9hJAdJoB03oA2gIR0CquR5BC2MLdX2UKGgGR0CfLdMINVinaAdN6ANoCEdAqr/HL5h0AHV9lChoBkdAoLvAuXeFc2gHTegDaAhHQKrDygnMMZx1fZQoaAZHQJ99vB68g6loB03oA2gIR0CqxKyKWLP2dX2UKGgGR0CgpwotthuwaAdN6ANoCEdAqsUfWOIZZXV9lChoBkdAoEYsoWpIc2gHTegDaAhHQKrLRfbblBB1fZQoaAZHQKEB7JxvNvBoB03oA2gIR0Cq0Eh0IToMdX2UKGgGR0Ch6do/A0sOaAdN6ANoCEdAqtGeOIZZS3V9lChoBkdAomiri++M62gHTegDaAhHQKrSV93KSxJ1fZQoaAZHQKBgEOmzjWFoB03oA2gIR0Cq2lMNUfgadX2UKGgGR0ChvM1IiC8OaAdN6ANoCEdAqt5ebVjI73V9lChoBkdAoi4Huogmq2gHTegDaAhHQKrfR+YtxuN1fZQoaAZHQKGwHBqKxcFoB03oA2gIR0Cq379IwudxdX2UKGgGR0CiiYDCxeLOaAdN6ANoCEdAquYQjKPn0XV9lChoBkdAoPEfxJ/XoWgHTegDaAhHQKrqO8SPEKp1fZQoaAZHQKFL7mZE2HdoB03oA2gIR0Cq6yen62v0dX2UKGgGR0Ch3S3rdFfBaAdN6ANoCEdAquvQUzsQd3V9lChoBkdAlFCGyC4Bm2gHTegDaAhHQKr1MRujynV1fZQoaAZHQJzf7nFHavloB03oA2gIR0Cq+TP5gw49dX2UKGgGR0CfqppZfUnYaAdN6ANoCEdAqvoh4+r2g3V9lChoBkdAnwAkojOcD2gHTegDaAhHQKr6oB/7SAp1fZQoaAZHQJ7Y7lPrOZ9oB03oA2gIR0CrAPPRZ2ZBdX2UKGgGR0CfkTpt78ekaAdN6ANoCEdAqwUeQCCBgHV9lChoBkdAoGyMPSUkfWgHTegDaAhHQKsGD1AZ88d1fZQoaAZHQKAvCgUUO/doB03oA2gIR0CrBoRz7uUmdX2UKGgGR0CgRYq1og3caAdN6ANoCEdAqw5dU0elsXV9lChoBkdAoMkPBi1Aq2gHTegDaAhHQKsT/nU2DQJ1fZQoaAZHQKA3G2oegctoB03oA2gIR0CrFOsLfDUFdX2UKGgGR0CiVm2Ifr8jaAdN6ANoCEdAqxVc0aZQYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f9dc79adfb568a51d92b6577974f547d8a016d36f0769e49d715ec50ecd21f
3
+ size 1251404
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2169.142027966259, "std_reward": 81.3062788991003, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-15T16:30:26.676274"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:408be2631dfc10460f678c52686f903472a63048e29997d1fd3c903305cb11e9
3
+ size 2170