File size: 6,851 Bytes
af646d0 a1ed8d4 af646d0 418438f af646d0 1bad3c9 af646d0 51c6d55 8a28f30 8754846 3b3c301 7191544 11c2e6a 7191544 8a28f30 4f64b3d af646d0 a1ed8d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
tags:
- merge
license: other
model-index:
- name: QuartetAnemoi-70B-t0.0001
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/QuartetAnemoi-70B-t0.0001
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/QuartetAnemoi-70B-t0.0001
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.42
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/QuartetAnemoi-70B-t0.0001
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.53
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/QuartetAnemoi-70B-t0.0001
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 85.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/QuartetAnemoi-70B-t0.0001
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/QuartetAnemoi-70B-t0.0001
name: Open LLM Leaderboard
---
<img src=https://huggingface.co/alchemonaut/QuartetAnemoi-70B-t0.0001/resolve/main/anemoi.png>
# QuartetAnemoi-70B-t0.0001
A sequential merge using a custom algorithm (NearSwap) of:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2)
- [Aurora-Nights-70B-v1.0](https://huggingface.co/sophosympatheia/Aurora-Nights-70B-v1.0)
- [Xwin-LM-70B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1)
<br/>
In our testing, this model seems like a storyteller, as might be expected, but the changes from this merge are extremely soft. We were impressed that, unlike most models, at the end of a story it did not often use cliches such as "In the end", "And so", "beacon of hope", etc.
<br/>
<br/>
# Quants
Most of the popular quant formats are available now, thanks to community efforts.
| Type | Misc | Author |
| ----- | ----- | ----- |
| [GGUF](https://huggingface.co/alchemonaut/QuartetAnemoi-70B-t0.0001-GGUF/tree/main) | | alchemonaut |
| [GGUF](https://huggingface.co/Nexesenex/alchemonaut_QuartetAnemoi-70B-iMat.GGUF) | iMat | Nexesenex |
| [GGUF](https://huggingface.co/mradermacher/QuartetAnemoi-70B-t0.0001-i1-GGUF) | iMat | mradermacher |
| [GGUF](https://huggingface.co/mradermacher/QuartetAnemoi-70B-t0.0001-GGUF) | Full Set | mradermacher |
| [exl2](https://huggingface.co/llmixer/QuartetAnemoi-70B-t0.0001-2.5bpw-h6-exl2) | 2.5bpw | llmixer |
| [exl2](https://huggingface.co/llmixer/QuartetAnemoi-70B-t0.0001-4bpw-h6-exl2) | 4.0bpw| llmixer |
| [exl2](https://huggingface.co/llmixer/QuartetAnemoi-70B-t0.0001-6.0bpw-h6-exl2) | 6.0bpw | llmixer |
| [AWQ](https://huggingface.co/tachyphylaxis/QuartetAnemoi-70B-t0.0001-AWQ) | | tachyphylaxis |
<br/>
<br/>
# NearSwap Algorithm
NearSwap retains most of the weights of the base model (Miqu), but when a weight is similar between the two, it is interpolated to the secondary model value. A parameter *t* specifies the sameness threshold. When the distance between two values is below *t*, the weight from the secondary model is used.
This version of the model uses *t* = 0.0001. At this *t*, about 0.8% of weights are fully switched to the secondary model during each pass. Model quality rapidly degrades above *t* = 0.0025:
- *t* = 0.0001 (~0.8% full swap): This model
- *t* = 0.0003 (~2% full swap)
- *t* = 0.001 (~10% full swap): [BoreanGale-70B](https://huggingface.co/alchemonaut/BoreanGale-70B)
- *t* = 0.0025 (~18% full swap): Generates one paragraph okay, but then reverts to garbage
- *t* = 0.005 (~35% full swap): Garbage; semi-related word lists
- *t* = 0.01 (~55% full swap): Garbage; pseudorandom tokens output
For QuartetAnemoi-70B-t0.0001, the three secondary models were each merged sequentially with *t* = 0.0001.
NearSwap implementation:
```
t: Union[float, np.ndarray],
v0: Union[np.ndarray, torch.Tensor],
v1: Union[np.ndarray, torch.Tensor],
...
lweight = numpy.absolute(v0-v1)
lweight = t / lweight
lweight = numpy.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0)
numpy.clip(lweight, a_min=0.0, a_max=1.0, out=lweight)
res = lerp(lweight,v0,v1)
```
<br/>
<br/>
# License and Use
Since the ultimate origin of Miqu is at this time unknown beyond speculation, this model is for noncommercial research use only.
<br/>
<br/>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alchemonaut__QuartetAnemoi-70B-t0.0001)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.86|
|AI2 Reasoning Challenge (25-Shot)|73.38|
|HellaSwag (10-Shot) |88.9|
|MMLU (5-Shot) |75.42|
|TruthfulQA (0-shot) |69.53|
|Winogrande (5-shot) |85.32|
|GSM8k (5-shot) |68.61|
|