File size: 1,431 Bytes
10930e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- alecmullen/autonlp-data-group-classification
co2_eq_emissions: 0.4362732160754736
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 441411446
- CO2 Emissions (in grams): 0.4362732160754736
## Validation Metrics
- Loss: 0.7598486542701721
- Accuracy: 0.8222222222222222
- Macro F1: 0.2912091747693842
- Micro F1: 0.8222222222222222
- Weighted F1: 0.7707160863181806
- Macro Precision: 0.29631463146314635
- Micro Precision: 0.8222222222222222
- Weighted Precision: 0.7341339689524508
- Macro Recall: 0.30174603174603176
- Micro Recall: 0.8222222222222222
- Weighted Recall: 0.8222222222222222
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alecmullen/autonlp-group-classification-441411446
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |