Update README.md
Browse files
README.md
CHANGED
@@ -24,54 +24,107 @@ It achieves the following results on the evaluation set:
|
|
24 |
### Compute your inferences
|
25 |
|
26 |
```python
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def __init__(
|
29 |
self,
|
30 |
-
|
|
|
31 |
sampling_rate: int = 16000,
|
32 |
-
|
33 |
-
max_length: Optional[int] = None,
|
34 |
-
pad_to_multiple_of: Optional[int] = None,
|
35 |
-
label2id: Dict = None,
|
36 |
-
max_audio_len: int = 5
|
37 |
):
|
|
|
|
|
38 |
|
39 |
-
self.processor = processor
|
40 |
self.sampling_rate = sampling_rate
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
# different padding methods
|
53 |
-
input_features = []
|
54 |
-
label_features = []
|
55 |
-
for feature in features:
|
56 |
-
speech_array, sampling_rate = torchaudio.load(feature["input_values"])
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
input_features.append({"input_values": input_tensor})
|
76 |
|
77 |
batch = self.processor.pad(
|
@@ -85,6 +138,63 @@ class DataColletor:
|
|
85 |
return batch
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
label2id = {
|
89 |
"female": 0,
|
90 |
"male": 1
|
@@ -97,30 +207,7 @@ id2label = {
|
|
97 |
|
98 |
num_labels = 2
|
99 |
|
100 |
-
|
101 |
-
model = AutoModelForAudioClassification.from_pretrained(
|
102 |
-
pretrained_model_name_or_path="alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech",
|
103 |
-
num_labels=num_labels,
|
104 |
-
label2id=label2id,
|
105 |
-
id2label=id2label,
|
106 |
-
)
|
107 |
-
|
108 |
-
data_collator = DataColletorTrain(
|
109 |
-
feature_extractor,
|
110 |
-
sampling_rate=16000,
|
111 |
-
padding=True,
|
112 |
-
label2id=label2id
|
113 |
-
)
|
114 |
-
|
115 |
-
test_dataloader = DataLoader(
|
116 |
-
dataset=test_dataset,
|
117 |
-
batch_size=16,
|
118 |
-
collate_fn=data_collator,
|
119 |
-
shuffle=False,
|
120 |
-
num_workers=10
|
121 |
-
)
|
122 |
-
|
123 |
-
preds = predict(test_dataloader=test_dataloader, model=model)
|
124 |
```
|
125 |
|
126 |
|
|
|
24 |
### Compute your inferences
|
25 |
|
26 |
```python
|
27 |
+
import os
|
28 |
+
from typing import List, Optional, Union, Dict
|
29 |
+
|
30 |
+
import tqdm
|
31 |
+
import torch
|
32 |
+
import torchaudio
|
33 |
+
import numpy as np
|
34 |
+
import pandas as pd
|
35 |
+
from torch import nn
|
36 |
+
from torch.utils.data import DataLoader
|
37 |
+
from torch.nn import functional as F
|
38 |
+
from transformers import (
|
39 |
+
AutoFeatureExtractor,
|
40 |
+
AutoModelForAudioClassification,
|
41 |
+
Wav2Vec2Processor
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
class CustomDataset(torch.utils.data.Dataset):
|
46 |
def __init__(
|
47 |
self,
|
48 |
+
dataset: List,
|
49 |
+
basedir: Optional[str] = None,
|
50 |
sampling_rate: int = 16000,
|
51 |
+
max_audio_len: int = 5,
|
|
|
|
|
|
|
|
|
52 |
):
|
53 |
+
self.dataset = dataset
|
54 |
+
self.basedir = basedir
|
55 |
|
|
|
56 |
self.sampling_rate = sampling_rate
|
57 |
+
self.max_audio_len = max_audio_len
|
58 |
|
59 |
+
def __len__(self):
|
60 |
+
"""
|
61 |
+
Return the length of the dataset
|
62 |
+
"""
|
63 |
+
return len(self.dataset)
|
64 |
|
65 |
+
def _cutorpad(self, audio: np.ndarray) -> np.ndarray:
|
66 |
+
"""
|
67 |
+
Cut or pad audio to the wished length
|
68 |
+
"""
|
69 |
+
effective_length = self.sampling_rate * self.max_audio_len
|
70 |
+
len_audio = len(audio)
|
71 |
|
72 |
+
# If audio length is bigger than wished audio length
|
73 |
+
if len_audio > effective_length:
|
74 |
+
audio = audio[:effective_length]
|
75 |
|
76 |
+
# Expand one dimension related to the channel dimension
|
77 |
+
return audio
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
|
80 |
+
def __getitem__(self, index) -> torch.Tensor:
|
81 |
+
"""
|
82 |
+
Return the audio and the sampling rate
|
83 |
+
"""
|
84 |
+
if self.basedir is None:
|
85 |
+
filepath = self.dataset[index]
|
86 |
+
else:
|
87 |
+
filepath = os.path.join(self.basedir, self.dataset[index])
|
88 |
+
|
89 |
+
speech_array, sr = torchaudio.load(filepath)
|
90 |
+
|
91 |
+
# Transform to mono
|
92 |
+
if speech_array.shape[0] > 1:
|
93 |
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
94 |
|
95 |
+
if sr != self.sampling_rate:
|
96 |
+
transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
|
97 |
+
speech_array = transform(speech_array)
|
98 |
+
sr = self.sampling_rate
|
99 |
|
100 |
+
speech_array = speech_array.squeeze().numpy()
|
101 |
|
102 |
+
# Cut or pad audio
|
103 |
+
speech_array = self._cutorpad(speech_array)
|
104 |
|
105 |
+
return speech_array
|
106 |
+
|
107 |
+
class CollateFunc:
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
processor: Wav2Vec2Processor,
|
111 |
+
max_length: Optional[int] = None,
|
112 |
+
padding: Union[bool, str] = True,
|
113 |
+
pad_to_multiple_of: Optional[int] = None,
|
114 |
+
sampling_rate: int = 16000,
|
115 |
+
):
|
116 |
+
self.padding = padding
|
117 |
+
self.processor = processor
|
118 |
+
self.max_length = max_length
|
119 |
+
self.sampling_rate = sampling_rate
|
120 |
+
self.pad_to_multiple_of = pad_to_multiple_of
|
121 |
|
122 |
+
def __call__(self, batch: List):
|
123 |
+
input_features = []
|
124 |
+
|
125 |
+
for audio in batch:
|
126 |
+
input_tensor = self.processor(audio, sampling_rate=self.sampling_rate).input_values
|
127 |
+
input_tensor = np.squeeze(input_tensor)
|
128 |
input_features.append({"input_values": input_tensor})
|
129 |
|
130 |
batch = self.processor.pad(
|
|
|
138 |
return batch
|
139 |
|
140 |
|
141 |
+
def predict(test_dataloader, model, device: torch.device):
|
142 |
+
"""
|
143 |
+
Predict the class of the audio
|
144 |
+
"""
|
145 |
+
model.to(device)
|
146 |
+
model.eval()
|
147 |
+
preds = []
|
148 |
+
|
149 |
+
with torch.no_grad():
|
150 |
+
for batch in tqdm.tqdm(test_dataloader):
|
151 |
+
input_values, attention_mask = batch['input_values'].to(device), batch['attention_mask'].to(device)
|
152 |
+
|
153 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
154 |
+
scores = F.softmax(logits, dim=-1)
|
155 |
+
|
156 |
+
pred = torch.argmax(scores, dim=1).cpu().detach().numpy()
|
157 |
+
|
158 |
+
preds.extend(pred)
|
159 |
+
|
160 |
+
return preds
|
161 |
+
|
162 |
+
|
163 |
+
def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict, id2label: Dict, device: torch.device):
|
164 |
+
num_labels = 2
|
165 |
+
|
166 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
|
167 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
168 |
+
pretrained_model_name_or_path=model_name_or_path,
|
169 |
+
num_labels=num_labels,
|
170 |
+
label2id=label2id,
|
171 |
+
id2label=id2label,
|
172 |
+
)
|
173 |
+
|
174 |
+
test_dataset = CustomDataset(audio_paths)
|
175 |
+
data_collator = CollateFunc(
|
176 |
+
processor=feature_extractor,
|
177 |
+
padding=True,
|
178 |
+
sampling_rate=16000,
|
179 |
+
)
|
180 |
+
|
181 |
+
test_dataloader = DataLoader(
|
182 |
+
dataset=test_dataset,
|
183 |
+
batch_size=16,
|
184 |
+
collate_fn=data_collator,
|
185 |
+
shuffle=False,
|
186 |
+
num_workers=10
|
187 |
+
)
|
188 |
+
|
189 |
+
preds = predict(test_dataloader=test_dataloader, model=model, device=device)
|
190 |
+
|
191 |
+
return preds
|
192 |
+
|
193 |
+
|
194 |
+
model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
|
195 |
+
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
|
196 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
197 |
+
|
198 |
label2id = {
|
199 |
"female": 0,
|
200 |
"male": 1
|
|
|
207 |
|
208 |
num_labels = 2
|
209 |
|
210 |
+
preds = get_gender(model_name_or_path, audio_paths, label2id, id2label, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
```
|
212 |
|
213 |
|