alenatz's picture
alenatz/BERT-BioCause-oversample
00bb4f5 verified
|
raw
history blame
2.64 kB
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: bert-because-trainer-oversample
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-because-trainer-oversample
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3274
- Accuracy: 0.8972
- F1: 0.8299
- Recall: 0.8342
- Precision: 0.8256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.6383 | 0.07 | 25 | 0.5128 | 0.7461 | 0.2882 | 0.1710 | 0.9167 |
| 0.5933 | 0.15 | 50 | 0.5335 | 0.7352 | 0.6545 | 0.8342 | 0.5385 |
| 0.4774 | 0.22 | 75 | 0.4369 | 0.8131 | 0.5804 | 0.4301 | 0.8925 |
| 0.4801 | 0.3 | 100 | 0.3538 | 0.8458 | 0.7429 | 0.7409 | 0.7448 |
| 0.3765 | 0.37 | 125 | 0.3890 | 0.8536 | 0.7267 | 0.6477 | 0.8278 |
| 0.3411 | 0.45 | 150 | 0.4052 | 0.8474 | 0.7710 | 0.8549 | 0.7021 |
| 0.2802 | 0.52 | 175 | 0.3509 | 0.8660 | 0.7701 | 0.7461 | 0.7956 |
| 0.2558 | 0.59 | 200 | 0.4704 | 0.8629 | 0.7179 | 0.5803 | 0.9412 |
| 0.4603 | 0.67 | 225 | 0.3298 | 0.8801 | 0.7968 | 0.7824 | 0.8118 |
| 0.3211 | 0.74 | 250 | 0.3053 | 0.8925 | 0.8189 | 0.8083 | 0.8298 |
| 0.2475 | 0.82 | 275 | 0.3052 | 0.8879 | 0.8209 | 0.8549 | 0.7895 |
| 0.2644 | 0.89 | 300 | 0.3688 | 0.8910 | 0.8077 | 0.7617 | 0.8596 |
| 0.3206 | 0.96 | 325 | 0.3332 | 0.8988 | 0.8320 | 0.8342 | 0.8299 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.3.1
- Datasets 2.19.1
- Tokenizers 0.15.1