--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: bert-because-trainer-oversample results: [] --- # bert-because-trainer-oversample This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3274 - Accuracy: 0.8972 - F1: 0.8299 - Recall: 0.8342 - Precision: 0.8256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6383 | 0.07 | 25 | 0.5128 | 0.7461 | 0.2882 | 0.1710 | 0.9167 | | 0.5933 | 0.15 | 50 | 0.5335 | 0.7352 | 0.6545 | 0.8342 | 0.5385 | | 0.4774 | 0.22 | 75 | 0.4369 | 0.8131 | 0.5804 | 0.4301 | 0.8925 | | 0.4801 | 0.3 | 100 | 0.3538 | 0.8458 | 0.7429 | 0.7409 | 0.7448 | | 0.3765 | 0.37 | 125 | 0.3890 | 0.8536 | 0.7267 | 0.6477 | 0.8278 | | 0.3411 | 0.45 | 150 | 0.4052 | 0.8474 | 0.7710 | 0.8549 | 0.7021 | | 0.2802 | 0.52 | 175 | 0.3509 | 0.8660 | 0.7701 | 0.7461 | 0.7956 | | 0.2558 | 0.59 | 200 | 0.4704 | 0.8629 | 0.7179 | 0.5803 | 0.9412 | | 0.4603 | 0.67 | 225 | 0.3298 | 0.8801 | 0.7968 | 0.7824 | 0.8118 | | 0.3211 | 0.74 | 250 | 0.3053 | 0.8925 | 0.8189 | 0.8083 | 0.8298 | | 0.2475 | 0.82 | 275 | 0.3052 | 0.8879 | 0.8209 | 0.8549 | 0.7895 | | 0.2644 | 0.89 | 300 | 0.3688 | 0.8910 | 0.8077 | 0.7617 | 0.8596 | | 0.3206 | 0.96 | 325 | 0.3332 | 0.8988 | 0.8320 | 0.8342 | 0.8299 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.1 - Datasets 2.19.1 - Tokenizers 0.15.1