--- license: apache-2.0 base_model: alex-miller/ODABert tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: curated-gender-equality-ordinal-weighted results: [] --- # curated-gender-equality-ordinal-weighted This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1956 - Accuracy: 0.9603 - F1: 0.9485 - Precision: 0.9288 - Recall: 0.9690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.653 | 1.0 | 342 | 0.4418 | 0.7789 | 0.7700 | 0.6341 | 0.9800 | | 0.3746 | 2.0 | 684 | 0.3035 | 0.9164 | 0.8967 | 0.8403 | 0.9613 | | 0.2861 | 3.0 | 1026 | 0.2572 | 0.9425 | 0.9268 | 0.8919 | 0.9645 | | 0.2451 | 4.0 | 1368 | 0.2372 | 0.9449 | 0.9297 | 0.8968 | 0.9651 | | 0.2205 | 5.0 | 1710 | 0.2252 | 0.9483 | 0.9340 | 0.9020 | 0.9684 | | 0.2019 | 6.0 | 2052 | 0.2159 | 0.9488 | 0.9347 | 0.9021 | 0.9697 | | 0.1881 | 7.0 | 2394 | 0.2091 | 0.9520 | 0.9384 | 0.9102 | 0.9684 | | 0.1762 | 8.0 | 2736 | 0.2035 | 0.9551 | 0.9422 | 0.9174 | 0.9684 | | 0.1699 | 9.0 | 3078 | 0.2052 | 0.9534 | 0.9402 | 0.9125 | 0.9697 | | 0.1572 | 10.0 | 3420 | 0.1975 | 0.9576 | 0.9452 | 0.9226 | 0.9690 | | 0.1502 | 11.0 | 3762 | 0.1997 | 0.9576 | 0.9452 | 0.9220 | 0.9697 | | 0.1451 | 12.0 | 4104 | 0.1934 | 0.9600 | 0.9481 | 0.9293 | 0.9677 | | 0.1406 | 13.0 | 4446 | 0.1994 | 0.9569 | 0.9444 | 0.9198 | 0.9703 | | 0.1375 | 14.0 | 4788 | 0.1912 | 0.9612 | 0.9497 | 0.9311 | 0.9690 | | 0.1321 | 15.0 | 5130 | 0.1943 | 0.9600 | 0.9482 | 0.9288 | 0.9684 | | 0.1275 | 16.0 | 5472 | 0.1974 | 0.9603 | 0.9485 | 0.9288 | 0.9690 | | 0.1269 | 17.0 | 5814 | 0.1928 | 0.9610 | 0.9493 | 0.9316 | 0.9677 | | 0.1264 | 18.0 | 6156 | 0.1924 | 0.9617 | 0.9502 | 0.9334 | 0.9677 | | 0.1244 | 19.0 | 6498 | 0.1951 | 0.9605 | 0.9488 | 0.9294 | 0.9690 | | 0.1195 | 20.0 | 6840 | 0.1956 | 0.9603 | 0.9485 | 0.9288 | 0.9690 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1