--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-ka-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: ka split: validation args: ka metrics: - name: Precision type: precision value: 0.8505682876839947 - name: Recall type: recall value: 0.8702816057519472 - name: F1 type: f1 value: 0.8603120330609663 - name: Accuracy type: accuracy value: 0.9424682155180856 --- # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2031 - Precision: 0.8506 - Recall: 0.8703 - F1: 0.8603 - Accuracy: 0.9425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5349 | 1.0 | 625 | 0.2377 | 0.8302 | 0.8218 | 0.8260 | 0.9287 | | 0.2353 | 2.0 | 1250 | 0.2037 | 0.8556 | 0.8536 | 0.8546 | 0.9394 | | 0.1782 | 3.0 | 1875 | 0.2031 | 0.8506 | 0.8703 | 0.8603 | 0.9425 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0