import os import torch import onnx import torch.nn as nn from torch.nn import functional as F from datetime import datetime torch.manual_seed(1337) # for reproducibility SEP = 50 * '-' # hyperparameters ---------------------------------------------------------------------------------- batch_size = 64 # how many independent sequences will we process in parallel block_size = 256 # what i sthe maximum context length for predictions max_iters = 5000 # how many iterations to train for eval_interval = 500 # how often to evaluate the model learning_rate = 3e-4 # how fast we update the weights, lowering the learning rate as the model gets bigger device = 'cuda' if torch.cuda.is_available() else 'cpu' # check if GPU is available eval_iters = 200 # how many batches to average for evaluation n_embd = 384 # number of embedding dimensions n_head = 6 # number of self-attention heads n_layer = 6 # number of transformer blocks dropout = 0.2 # dropout rate # dataset ------------------------------------------------------------------------------------------ dataset_path = 'dataset/tiny-lafontaine.txt' with open(dataset_path, 'r', encoding='utf-8') as f: text = f.read() # here are all the unique characters that occur in this text chars = sorted(list(set(text))) vocab_size = len(chars) # create a mapping from characters to integers stoi = {ch: i for i, ch in enumerate(chars)} # chars -> ints table itos = {i: ch for i, ch in enumerate(chars)} # ints -> chars table encode = lambda s: [stoi[c] for c in s] # encoder: takes a string, outputs a list of integers decode = lambda l: ''.join([itos[i] for i in l]) # decoder: takes a list of integers, output a string # train and test splits data = torch.tensor(encode(text), dtype=torch.long) n = int(0.9 * len(data)) # first 90% of the data will be the training set, rest will be the validation set train_data = data[:n] val_data = data[n:] # data loading ------------------------------------------------------------------------------------- def get_batch(split): # Generate a small batch of data of inputs x and targets y data = train_data if split == 'train' else val_data # choose the split ix = torch.randint(len(data) - block_size, (batch_size,)) # sample random starting indices for the sequences x = torch.stack([data[i: i + block_size] for i in ix]) # create a batch of context windows y = torch.stack([data[i + 1:i + block_size + 1] for i in ix]) # create a batch of targets, one step forward x, y = x.to(device), y.to(device) # move the data to the device return x, y @torch.no_grad() # this is just to reduce memory consumption, block won't call backward, no back-propagation def estimate_loss(): out = {} # store the losses for the train and val splits model.eval() # switch to evaluation mode for split in ['train', 'val']: # iterate over both splits losses = torch.zeros(eval_iters) # store the loss for each batch for k in range(eval_iters): # iterate over the number of batches X, Y = get_batch(split) # get a batch of data _, loss = model(X, Y) # compute the loss losses[k] = loss.item() # store the loss out[split] = losses.mean() # store the average loss for the split model.train() # switch back to training mode return out # return the losses # self-attention head ------------------------------------------------------------------------------ class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) # key projection self.query = nn.Linear(n_embd, head_size, bias=False) # query projection self.value = nn.Linear(n_embd, head_size, bias=False) # value projection self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) # causal mask self.dropout = nn.Dropout(dropout) # dropout layer def forward(self, x): B, T, C = x.shape k = self.key(x) # (B, T, C) q = self.query(x) # (B, T, C) # compute attention scores ("affinities") wei = q @ k.transpose(-2, -1) * C**-0.5 # (B, T, T) @ (B, C, T) -> (B, T, T) wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) wei = F.softmax(wei, dim=-1) # (B, T, T) wei = self.dropout(wei) # apply dropout # perform the weighted aggregation of the values v = self.value(x) out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C) return out # multi-attention head ----------------------------------------------------------------------------- class MultiHeadAttention(nn.Module): """multiple heads of self-attention in parallel""" def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) # create n_heads heads self.proj = nn.Linear(n_embd, n_embd) # linear projection to get back to the original dimension def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) # concatenate the outputs of each head out = self.proj(out) # linear projection to get back to the original dimension return out # feedforward block -------------------------------------------------------------------------------- class FeedForward(nn.Module): """a simple linear layer followed by a non-linearity""" def __init__(self, n_embd): super().__init__() # call the constructor of the parent class self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), # linear layer nn.ReLU(), # activation function nn.Linear(4 * n_embd, n_embd), # projection layer to get back to the original dimension nn.Dropout(dropout), # dropout layer ) def forward(self, x): return self.net(x) # apply the feedforward block # transformer block -------------------------------------------------------------------------------- class Block(nn.Module): """ Transformer block: communication followed by computation """ def __init__(self, n_embd, n_head): # n_embd: embedding dimension, n_head: number of heads we'd like super().__init__() head_size = n_embd // n_head # size of the self-attention heads self.sa = MultiHeadAttention(n_head, head_size) # self-attention layer self.ffwd = FeedForward(n_embd) # feedforward block self.ln1 = nn.LayerNorm(n_embd) # layer normalization self.ln2 = nn.LayerNorm(n_embd) # layer normalization def forward(self, x): x = x + self.sa(self.ln1(x)) # apply the self-attention block. Layer normalization is applied before x = x + self.ffwd(self.ln2(x)) # apply the feedforward block. Layer normalization is applied before return x # simple bigram model ------------------------------------------------------------------------------ class BigramLanguageModel(nn.Module): def __init__(self): super().__init__() # each token directly reads off the logits from the next token from a lookup table self.token_embedding_table = nn.Embedding(vocab_size, n_embd) # token embeddings self.position_embedding_table = nn.Embedding(block_size, n_embd) # positional embeddings self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) # stack of transformer blocks self.ln_f = nn.LayerNorm(n_embd), # final layer normalization self.lm_head = nn.Linear(n_embd, vocab_size) # output layer def forward(self, idx, targets=None): B, T = idx.shape # idx and targets are both (B, T) tensors of integers tok_emb = self.token_embedding_table(idx) # (B, T, C) = Batch, Time (block_size), Channels (vocab_size) pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T, C) x = tok_emb + pos_emb # (B, T, C) x = self.blocks(x) # apply the transformer blocks, multiple layers of self-attention and feedforward, (B, T, C) logits = self.lm_head(x) # decoder head (B, T, vocab_size) if targets is None: # if we don't have targets, we can't compute the loss loss = None else: # reshape the logits to be (B*T, C) and the targets to be (B*T) so we can compute the loss B, T, C = logits.shape # unpack batch, time, channels logits = logits.view(B * T, C) # flatten the Time and Batch dimensions targets = targets.view(B * T) # flatten the Time and Batch dimensions # compute the loss using cross entropy = quality of the logicts in respect to the targets loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): # idx is a (B, T) array of indices in the current context for _ in range(max_new_tokens): # crop idx to the last block_size tokens idx_cond = idx[:, -block_size:] # (B, T) # get the predictions logits, loss = self(idx_cond) # (B, T, C) internally calls the forward method in pytorch # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx # train model -------------------------------------------------------------------------------------- def train_model(): # create the model and optimizer model = BigramLanguageModel() m = model.to(device) # move the model to the device (cuda) # create a PyTorch optimizer optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate) # AdamW is a good optimizer for transformers # training loop ------------------------------------------------------------------------------------ for iter in range(max_iters): # every once in a while evaluate the loss on the train and val sets if iter % eval_interval == 0: losses = estimate_loss() print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") # sample a batch of data xb, yb = get_batch('train') # evaluate the loss _, loss = m(xb, yb) # calling the model and passing in the input and the targets optimizer.zero_grad(set_to_none=True) # clear previous gradients loss.backward() # compute new gradients optimizer.step() # update the weights # generate from the model context = torch.zeros((1, 1), dtype=torch.long, device=device) # initialize context to be a single token print(decode(m.generate(context, max_new_tokens=500)[0].tolist())) # generate 100 new tokens # save model save_model(model) return m # save model --------------------------------------------------------------------------------------- def save_model(model, save_path=None): try: if save_path is None: filename = os.path.splitext(os.path.basename(__file__))[0] timestamp = datetime.now().strftime('%y%m%d_%H%M') save_path = f'{filename}_{timestamp}.pth' torch.save(model.state_dict(), save_path) print(f"Model saved to {save_path}.") return save_path except Exception as e: print(f"Error saving the model: {e}") # load model --------------------------------------------------------------------------------------- def load_model(model_path): try: # Load the model device = 'cuda' if torch.cuda.is_available() else 'cpu' model = BigramLanguageModel().to(device) model.load_state_dict(torch.load(model_path, map_location=device, weights_only=True)) print(f"Model loaded from {model_path}.") return model except Exception as e: print(f"Error loading the model: {e}") # run inference ------------------------------------------------------------------------------------ def run_inference(model, max_tokens=500): # Set to evaluation mode model.eval() # Define a starting context and run inference context = torch.zeros((1, 1), dtype=torch.long, device=device) # Initialize with a single token generated_sequence = model.generate(context, max_tokens) # Generate text generated_text = decode(generated_sequence[0].tolist()) # Decode the generated indices to text return generated_text # export model to onnx format ---------------------------------------------------------------------- def export_onnx_model(pt_model, onnx_path): try: # Dummy input tensor of the same shape as your training input dummy_input = torch.zeros((1, 256), dtype=torch.long).to(device) # Example input shape # Export the model to ONNX format torch.onnx.export( pt_model, # your trained model dummy_input, # example input tensor onnx_path, # output file path input_names=["input"], # input layer names output_names=["output"], # output layer names dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}, # dynamic axis support opset_version=13 # compatibility with latest ONNX version ) print(f"Model exported to {onnx_path}.") except Exception as e: print(f"Error exporting the onnx model: {e}") if __name__ == '__main__': # train model model = train_model()