Alexander Suslov commited on
Commit
98f2c2f
β€’
1 Parent(s): b134866

added sftpm model fine-tuned on capsule category of the MVTec dataset

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +48 -0
  3. openvino_model.tar +3 -0
  4. pytorch_model.bin +3 -0
  5. sftpm_capsule.onnx +3 -0
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ openvino_model.tar filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,51 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ [SFTPM](https://github.com/openvinotoolkit/anomalib/tree/main/anomalib/models/stfpm) model from [Anomalib](https://github.com/openvinotoolkit/anomalib) fine-tuned for capsule category of the [MVTec dataset](https://www.mvtec.com/company/research/datasets/mvtec-ad). Checkpoint trained using the following [notebook](https://github.com/openvinotoolkit/anomalib/blob/main/notebooks/000_getting_started/001_getting_started.ipynb).
5
+
6
+ ```
7
+ ──────────────────────────────────────────────────
8
+ Test metric DataLoader 0
9
+ ──────────────────────────────────────────────────
10
+ image_AUROC 0.8436378240585327
11
+ image_F1Score 0.9356223344802856
12
+ pixel_AUROC 0.9719913601875305
13
+ pixel_F1Score 0.41566985845565796
14
+ ──────────────────────────────────────────────────
15
+ ```
16
+
17
+ The main intent is to use it in samples and demos for model optimization. Here is the advantages:
18
+ - MVTec dataset can automatically downloaded and is quite small.
19
+ - The model from the anomaly detection domain such as SFTPM is sensitive to the optimization methods to allows demonstrate methods with accuracy controll.
20
+
21
+ Here is the code to test the checkpoint:
22
+
23
+ ```python
24
+ from pytorch_lightning import Trainer
25
+ from anomalib.config import get_configurable_parameters
26
+ from anomalib.data import get_datamodule
27
+ from anomalib.models import get_model
28
+ from anomalib.utils.callbacks import LoadModelCallback, get_callbacks
29
+
30
+ CHECKPOINT_URL = 'https://huggingface.co/alexsu52/sftpm_mvtec_capsule/resolve/main/pytorch_model.bin'
31
+ CHECKPOINT_PATH = '~/pytorch_model.bin'
32
+
33
+ #Download CHECKPOINT_URL to CHECKPOINT_PATH
34
+
35
+ config = get_configurable_parameters(config_path="./anomalib/models/sftpm/config.yaml")
36
+ config["dataset"]["path"] = <path_to_dataset>
37
+ config['dataset']['category'] = 'capsule'
38
+
39
+ datamodule = get_datamodule(config)
40
+ datamodule.setup() # Downloads the dataset if it's not in the specified `root` directory
41
+ datamodule.prepare_data() # Create train/val/test/prediction sets.
42
+
43
+ model = get_model(config)
44
+
45
+ callbacks = get_callbacks(config)
46
+ load_model_callback = LoadModelCallback(weights_path=CHECKPOINT_PATH)
47
+ callbacks.insert(0, load_model_callback)
48
+
49
+ trainer = Trainer(**config.trainer, callbacks=callbacks)
50
+ trainer.test(model=model, datamodule=datamodule)
51
+ ```
openvino_model.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8420e799269d0b29244fdb32a5b670c3fb63fa8bf56d16547b02774793144b77
3
+ size 44748800
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3dff45bdddcb077cf2fa5eb7499b3746891f53059aa90bb59da068e62f93c8
3
+ size 33536819
sftpm_capsule.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1dce6ebf6e78428a4d38ff0b78423cbd1e1ec973e1e07954d74fe64435d2428
3
+ size 22522197