alfredo-wh commited on
Commit
9e98230
1 Parent(s): 3b03926

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - ALE/Pacman-v5
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: ALE/Pacman-v5
16
+ type: ALE/Pacman-v5
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 29.90 +/- 10.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **ALE/Pacman-v5**
25
+ This is a trained model of a **A2C** agent playing **ALE/Pacman-v5**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo a2c --env ALE/Pacman-v5 -orga alfredo-wh -f logs/
47
+ python -m rl_zoo3.enjoy --algo a2c --env ALE/Pacman-v5 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo a2c --env ALE/Pacman-v5 -orga alfredo-wh -f logs/
53
+ python -m rl_zoo3.enjoy --algo a2c --env ALE/Pacman-v5 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo a2c --env ALE/Pacman-v5 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo a2c --env ALE/Pacman-v5 -f logs/ -orga alfredo-wh
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('env_wrapper',
66
+ ['stable_baselines3.common.atari_wrappers.AtariWrapper']),
67
+ ('frame_stack', 4),
68
+ ('n_envs', 16),
69
+ ('n_timesteps', 500000.0),
70
+ ('policy', 'CnnPolicy'),
71
+ ('policy_kwargs',
72
+ 'dict(optimizer_class=RMSpropTFLike, '
73
+ 'optimizer_kwargs=dict(eps=1e-5))'),
74
+ ('vf_coef', 0.25),
75
+ ('normalize', False)])
76
+ ```
77
+
78
+ # Environment Arguments
79
+ ```python
80
+ {'render_mode': 'rgb_array'}
81
+ ```
a2c-ALE-Pacman-v5.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59a6d34095d77ee8730947656476eef0f5cfab25c8545abb90b189708dc153cb
3
+ size 13678366
a2c-ALE-Pacman-v5/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.1
a2c-ALE-Pacman-v5/data ADDED
The diff for this file is too large to render. See raw diff
 
a2c-ALE-Pacman-v5/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb5f41727ccb98cd16d86257a9e90f3c6238a5afd7e400cd8df8c47ba2ae91fe
3
+ size 6752690
a2c-ALE-Pacman-v5/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9fad70fe7efad7de33934aa05c3f348d83dc86710f4d7704daaee90fbcaee78
3
+ size 6756210
a2c-ALE-Pacman-v5/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-ALE-Pacman-v5/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.2.1
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - conf_file
5
+ - a2c.yml
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - ALE/Pacman-v5
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs/
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3695016263
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - env_wrapper
3
+ - - stable_baselines3.common.atari_wrappers.AtariWrapper
4
+ - - frame_stack
5
+ - 4
6
+ - - n_envs
7
+ - 16
8
+ - - n_timesteps
9
+ - 500000.0
10
+ - - policy
11
+ - CnnPolicy
12
+ - - policy_kwargs
13
+ - dict(optimizer_class=RMSpropTFLike, optimizer_kwargs=dict(eps=1e-5))
14
+ - - vf_coef
15
+ - 0.25
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d32c35c6916ae2f77e695b651e8a47bca597d396c429761d24504b5ccaf64e2
3
+ size 199686
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 29.9, "std_reward": 10.348429832588131, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-11-30T19:07:37.625814"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebb979802a7ffa28578b78d4d1bd2e26355d4c67de6b3b3ed2e57bd697839b7b
3
+ size 48135