ali2066 commited on
Commit
9e2e19a
·
1 Parent(s): ac5052c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: sentence_bert-base-uncased-finetuned-SENTENCE
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # sentence_bert-base-uncased-finetuned-SENTENCE
19
+
20
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0441
23
+ - Precision: 0.9987
24
+ - Recall: 0.9926
25
+ - F1: 0.9956
26
+ - Accuracy: 0.9915
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.0001
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 317 | 0.3098 | 0.9246 | 0.8867 | 0.9053 | 0.8574 |
58
+ | 0.3357 | 2.0 | 634 | 0.3024 | 0.9402 | 0.8906 | 0.9147 | 0.8724 |
59
+ | 0.3357 | 3.0 | 951 | 0.5501 | 0.8635 | 0.9512 | 0.9052 | 0.8468 |
60
+ | 0.18 | 4.0 | 1268 | 0.5822 | 0.8872 | 0.9375 | 0.9117 | 0.8604 |
61
+ | 0.0489 | 5.0 | 1585 | 0.6994 | 0.8932 | 0.9473 | 0.9194 | 0.8724 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.15.0
67
+ - Pytorch 1.10.1+cu113
68
+ - Datasets 1.18.0
69
+ - Tokenizers 0.10.3