--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: bert-base-uncased model-index: - name: sentence_bert-base-uncased-finetuned-SENTENCE results: [] --- # sentence_bert-base-uncased-finetuned-SENTENCE This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4834 - Precision: 0.8079 - Recall: 1.0 - F1: 0.8938 - Accuracy: 0.8079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.3520 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 2.0 | 26 | 0.3761 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 3.0 | 39 | 0.3683 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 4.0 | 52 | 0.3767 | 0.8889 | 1.0 | 0.9412 | 0.8889 | | No log | 5.0 | 65 | 0.3834 | 0.8889 | 1.0 | 0.9412 | 0.8889 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3