--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: sentence_bert-base-uncased-finetuned-SENTENCE results: [] --- # sentence_bert-base-uncased-finetuned-SENTENCE This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5512 - Precision: 0.8868 - Recall: 0.9048 - F1: 0.8957 - Accuracy: 0.8321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 130 | 0.4901 | 0.875 | 0.8422 | 0.8583 | 0.7744 | | No log | 2.0 | 260 | 0.4580 | 0.8877 | 0.8663 | 0.8769 | 0.8026 | | No log | 3.0 | 390 | 0.4147 | 0.8725 | 0.9519 | 0.9105 | 0.8482 | | 0.3926 | 4.0 | 520 | 0.4996 | 0.8776 | 0.9198 | 0.8982 | 0.8308 | | 0.3926 | 5.0 | 650 | 0.6170 | 0.8777 | 0.8824 | 0.88 | 0.8048 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3