NAME: SEnSeIv2-SegFormerB2-S2-ambiguous #------------- #Model options #------------- PATCH_SIZE: 512 SEnSeIv2: 'hf_models/sensei-configs/senseiv2-medium.yaml' MODEL_TYPE: 'Segformer' SEGFORMER_CONFIG: 'nvidia/mit-b2' RECOVERY_MODULE: false CLASSES: 7 MULTIMODAL: false NUM_CHANNELS: null # Set to null for sensor independent models #---------------- #training options (not needed for inference) #---------------- EPOCHS: 105 BATCH_SIZE: 8 PHASES: [0, 1, 2, 75, 95, 110] ACCUMULATE_STEPS: [1, 1, 1, 1, 1, 1] LR: [0.000005, 0.00002, 0.0001, 0.00002, 0.00001, 0.000002] EPSILON: 0.000001 WEIGHT_DECAY: 0.0001 L1_REG: 0 RECOVERY_WARMUP_STEPS: 10000 RECOVERY_LOSS_FACTOR: 1 LOSS: 'ambiguous_crossentropy_loss' # Data options # Note: L7Irish and L8CCA are very large, so repeat other datasets to make up for it # Training epochs will max out at 4000 steps, so repeating datasets beyond that just # changes relative frequency of each dataset appearing. TRAIN_DIRS: - 'path/to/be/set' VALID_DIRS: - 'path/to/be/set' MIN_BANDS: 3 MAX_BANDS: 13