[paths] train = "data/relations_0401_train.spacy" dev = "data/relations_0401_dev.spacy" raw = null init_tok2vec = null vectors = null [system] seed = 342 gpu_allocator = "pytorch" [nlp] lang = "en" pipeline = ["transformer","relation_extractor"] disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} batch_size = 1000 [components] [components.relation_extractor] factory = "relation_extractor" threshold = 0.5 [components.relation_extractor.model] @architectures = "rel_model.v1" [components.relation_extractor.model.classification_layer] @architectures = "rel_classification_layer.v1" nI = null nO = null [components.relation_extractor.model.create_instance_tensor] @architectures = "rel_instance_tensor.v1" pooling = {"@layers":"reduce_mean.v1"} [components.relation_extractor.model.create_instance_tensor.get_instances] @misc = "rel_instance_generator.v1" max_length = 50 [components.relation_extractor.model.create_instance_tensor.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v1" name = "timhbach/Team-Gryffindor-bert-base-finetuned-NER-creditcardcontract" [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 64 stride = 48 [components.transformer.model.tokenizer_config] use_fast = true [corpora] [corpora.dev] @readers = "Gold_ents_Corpus.v1" file = ${paths.dev} [corpora.train] @readers = "Gold_ents_Corpus.v1" file = ${paths.train} [training] seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600000 max_epochs = 0 max_steps = 1000 eval_frequency = 100 frozen_components = [] dev_corpus = "corpora.dev" train_corpus = "corpora.train" before_to_disk = null annotating_components = [] [training.batcher] @batchers = "spacy.batch_by_padded.v1" discard_oversize = true size = 2000 buffer = 256 get_length = null [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 [training.optimizer.learn_rate] @schedules = "warmup_linear.v1" warmup_steps = 250 total_steps = 20000 initial_rate = 0.00005 [training.score_weights] rel_micro_p = 0.0 rel_micro_r = 0.0 rel_micro_f = 1.0 [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]