File size: 4,736 Bytes
692fdae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from matplotlib import pyplot as plt
from tensorflow.keras import layers as ksl
import numpy as np
import pandas as pd

class Model():
    def __init__(self,loadWeights = False,loadModel = False,weightAddr = None,modelAddr=None):
        if loadModel:
            self.net = self.loadModel(modelAddr)
        elif not(loadModel and loadWeights):
            self.net = self.buildModel()
        elif loadWeights:
            self.net = self.loadWeights()
            self.loadWeights(weightAddr)
        else :
            print('[Error] incompatible inputs !')

        self.const = None
        



    def myLoss(y_true,y_pred):
        return tf.reduce_mean(tf.square(y_true - y_pred),axis = -1)
    def compile(self,loss,metrics,optim):
        self.net.compile(loss = loss,optimizer = optim ,metrics = metrics)

    def train(self,e,b,Data,label):
        hist = self.net.fit(Data,label,epochs = e,batch_size = b)
        return hist

    def buildModel(self):
        inpIm1 = ksl.Input((128,128,3),name = 'image1Input')
        inpIm2 = ksl.Input((128,128,3),name = 'image2Input')
        inpIm3 = ksl.Input((128,128,3),name = 'image3Input')
        inpIm4 = ksl.Input((128,128,3),name = 'image4Input')
        
        x = ksl.Conv2D(32,kernel_size=3,strides=1,padding='same')(inpIm1)
        x = ksl.Lambda(self.relu)(x)
        x = ksl.MaxPool2D([2,2])(x)
        x = ksl.Conv2D(64,kernel_size=3,padding='same')(x)
        x = ksl.Lambda(self.relu)(x)
        x = ksl.MaxPool2D([2,2])(x)
        x = ksl.Conv2D(128,kernel_size=3,padding='same')(x)
        x = ksl.Lambda(self.relu)(x)
        x = ksl.MaxPool2D([2,2])(x)

        w = ksl.Conv2D(32,kernel_size=3,strides=1,padding='same')(inpIm2)
        w = ksl.Lambda(self.relu)(w)
        w = ksl.MaxPool2D([2,2])(w)
        w = ksl.Conv2D(64,kernel_size=3,padding='same')(w)
        w = ksl.Lambda(self.relu)(w)
        w = ksl.MaxPool2D([2,2])(w)
        w = ksl.Conv2D(128,kernel_size=3,padding='same')(w)
        w = ksl.Lambda(self.relu)(w)
        w = ksl.MaxPool2D([2,2])(w)

        y = ksl.Conv2D(32,kernel_size=3,strides=1,padding='same')(inpIm3)
        y=ksl.Lambda(self.relu)(y)
        y = ksl.MaxPool2D([2,2])(y)
        y = ksl.Conv2D(64,kernel_size=3,padding='same')(y)
        y = ksl.Lambda(self.relu)(y)
        y = ksl.MaxPool2D([2,2])(y)
        y = ksl.Conv2D(128,kernel_size=3,padding='same')(y)
        y = ksl.Lambda(self.relu)(y)
        y = ksl.MaxPool2D([2,2])(y)

        z = ksl.Conv2D(32,kernel_size=3,strides=1,padding='same')(inpIm4)
        z = ksl.MaxPool2D([2,2])(z)
        z = ksl.Conv2D(64,kernel_size=3,padding='same')(z)
        z = ksl.MaxPool2D([2,2])(z)
        z = ksl.Conv2D(64,kernel_size=3,padding='same')(z)
        z = ksl.MaxPool2D([2,2])(z)
        

        inpTxtFeatures = ksl.Input((4,),name = 'numFeatureInput')
        t = ksl.Dense(1024,'relu')(inpTxtFeatures)
        t = ksl.Dense(512,'relu')(t)
        t = ksl.Dense(256,'relu')(t)
        t = ksl.Reshape((16,16,1))(t)



        concatInput = ksl.concatenate([w,x,y,z,t],axis=3)
        out = ksl.Conv2D(128,kernel_size=3,padding='same')(concatInput)
        out = ksl.MaxPool2D([2,2])(out)
        out = ksl.Conv2D(256,kernel_size=3,padding='same')(out)
        out = ksl.MaxPool2D([2,2])(out)
        out = ksl.Flatten()(out)
        out = ksl.Dense(128,'relu')(out)
        out = ksl.Dense(64,'relu')(out)
        out = ksl.Dense(1,'linear')(out)
        net = tf.keras.Model(inputs = [inpIm1,inpIm2,inpIm3,inpIm4,inpTxtFeatures],outputs = out)
        return net
    def predict(self,inputList,const):
        numericFeatur = inputList[4:]
        numericFeatur = pd.DataFrame(numericFeatur)
        max = numericFeatur.max()
        numericFeatur = numericFeatur/max
        images = inputList[:4]
        images = [self.preProcess(im) for im in images]
        pred = self.net.predict(np.concatenate((images,numericFeatur.to_numpy())))
        return pred*const

    def saveModel(self):
        self.net.save('./Models/model.h5')
        self.net.save_weights('./Models/modelWeights.h5')
    def loadWeights(self,weightAddr):
        net = self.buildModel()
        net.load_weghts(weightAddr)
        return net
    @staticmethod
    def loadModel(modelAddr):
        net = tf.kerasl.models.load_model(modelAddr)
        return net

 
        return image
    @staticmethod
    def relu(x):
        return tf.maximum( 0.0,x)
   
    @staticmethod
    def plotHistory(Hist):
        # plot History
        plt.plot(Hist.history['loss'])
        plt.title('model loss')
        plt.show()
        plt.plot(Hist.history['mse'])
        plt.title('model mse')
        plt.show()