alkiskoudounas commited on
Commit
cdd7f0e
1 Parent(s): c485f04

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 898.79 +/- 55.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7392cc5e5f453c149735794b2a70fc0744396eddc2d824b2d85f758518a8dfa1
3
+ size 129259
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ea10e3040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ea10e30d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ea10e3160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ea10e31f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7ea10e3280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7ea10e3310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ea10e33a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ea10e3430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7ea10e34c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ea10e3550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ea10e35e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ea10e3670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7ea10e0d80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680757143537185384,
68
+ "learning_rate": 0.001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANdR2L4Moxq/WK3iPmRyiT4PgMk+6npsPWoX7z6ALi+/LQPovuLIHb5T/eU+9+mJPiGtKr4JcrU85lAMP1TwHT1HdUe/CkFuvM3xgz/lN3E+3uFLv3uYkb6bnh6+BTdhvo7Yjz4qRb8+UgeqPiECZT6sCjA+g3hNP1faTbvVzee+Uo3WPX8m7D0V+lc+mrzoPi8CFb8YyPC9OxKevtOYyr2C8/A+sFwfO6S/Zb+Qd369eVwtv2TGzDy8rhu/wPqhPC90xb8swgs8FUKKO6+jD76O2I8+KkW/PlIHqj4hAmU+J4cFv2IRn78VWOc9Ku5qvd6uNr4Ojqk92msUPg5xPb/JIBO/TKP8O3BGdj57PIO9rXMDvuo6v7xsJFo/4o79Pac8Kb8Uhh+9NhOGP0S0uj1rfpa/kWFGvXLxOD20AaY8jtiPPipFvz5SB6o+IQJlPujczr4AfUa/2mDGPtphkz7RVeC9jJaYPKoxzj4D9ie/xYqvvmHZBL4F68w+ZtrFPTTbkr52I9G9uOEMP+fjIz7tIUK/y2Q4vlrLej+onm0+j8agvxq2o77i0gS+g5CCvY7Yjz4qRb8+UgeqPiECZT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADBJ2ayAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdgbePQAAAACcsfq/AAAAAGfcpr0AAAAAYUbxPwAAAACt4dE9AAAAAJAq3j8AAAAAOxazvQAAAAD4yfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvvs0tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLuGtD0AAAAAsukAwAAAAAAQXtG9AAAAAI/p/z8AAAAA0b9vPQAAAADrOgFAAAAAANaizr0AAAAAGvPdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJm5JDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARp0m9AAAAALik3b8AAAAAdccDPQAAAAB9bPA/AAAAAFwvnz0AAAAAdmPyPwAAAADwXFg9AAAAAIHF7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpIui2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANBupPQAAAABRNPW/AAAAAJ4Jt70AAAAA30HpPwAAAABRTSC9AAAAALXY2z8AAAAALFixPQAAAADTgPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa9NkQPI4mMAWyUTegDjAF0lEdAqoTigyuZC3V9lChoBkdAibToUzsQd2gHTegDaAhHQKqNa8vmHQB1fZQoaAZHQIa9IPEsJ6ZoB03oA2gIR0CqjZnMdLg5dX2UKGgGR0CIdfLRKHwgaAdN6ANoCEdAqpPgU34sVnV9lChoBkdAiGxQmeDnNmgHTegDaAhHQKqUGGFBY3h1fZQoaAZHQIgWSJTER8NoB03oA2gIR0CqmcP3BYV7dX2UKGgGR0CIb1AfuCwsaAdN6ANoCEdAqpnxDLKV6nV9lChoBkdAh5uiVKPGQ2gHTegDaAhHQKqgCJiy6c11fZQoaAZHQIdgq8Djin5oB03oA2gIR0CqoEDRMN+cdX2UKGgGR0CGmTngYP5IaAdN6ANoCEdAqqhHSfDk2nV9lChoBkdAh0ThmGucMGgHTegDaAhHQKqokT+NtIl1fZQoaAZHQIcJkkOZssRoB03oA2gIR0Cqr5R1X/5tdX2UKGgGR0CAIgqBmPHUaAdN6ANoCEdAqq/KU/wAl3V9lChoBkdAheBhS1mapmgHTegDaAhHQKq1nFQVKwp1fZQoaAZHQIb5tRHf/FRoB03oA2gIR0CqtdAR02cbdX2UKGgGR0CG2s3974SIaAdN6ANoCEdAqrvqtNi6QXV9lChoBkdAh73xs/IKdGgHTegDaAhHQKq8I8La24N1fZQoaAZHQIS3iqOtGNJoB03oA2gIR0CqwzRKg7HRdX2UKGgGR0CF9lA2ycCpaAdN6ANoCEdAqsN5bILgGnV9lChoBkdAh/CLGrCFbmgHTegDaAhHQKrLpEsJ6Y51fZQoaAZHQIjsTzundftoB03oA2gIR0Cqy9kV32VWdX2UKGgGR0CGfWcOskpraAdN6ANoCEdAqtG5jYqXnnV9lChoBkdAilcUIcBEKGgHTegDaAhHQKrR50WdmQN1fZQoaAZHQIlj+ois4kxoB03oA2gIR0Cq1/Tl1bJPdX2UKGgGR0CHht8Sf16FaAdN6ANoCEdAqtgpGhEjPnV9lChoBkdAiZaYWDYh+2gHTegDaAhHQKreP/Q0GeN1fZQoaAZHQIeW7V8Ti85oB03oA2gIR0Cq3ouZkTYedX2UKGgGR0CJn81VHWjHaAdN6ANoCEdAqueDNt65XnV9lChoBkdAidexcVxjrmgHTegDaAhHQKrnt5Sm65J1fZQoaAZHQIgMEasIVudoB03oA2gIR0Cq7YI73fygdX2UKGgGR0CGpSEOAiFCaAdN6ANoCEdAqu2u9OARTXV9lChoBkdAiwoP4/NZ/2gHTegDaAhHQKrzxn1WbPR1fZQoaAZHQIgu9hJAdGRoB03oA2gIR0Cq8/92HLzPdX2UKGgGR0CJIflnyup0aAdN6ANoCEdAqvnAB3iaRnV9lChoBkdAiaP5x7zClGgHTegDaAhHQKr57OKwY+B1fZQoaAZHQIpJNGqgh8poB03oA2gIR0CrAlVMdtEYdX2UKGgGR0CJsUih37k5aAdN6ANoCEdAqwKrF0gbInV9lChoBkdAin9qEnLJS2gHTegDaAhHQKsJSdOqNqB1fZQoaAZHQIpW9F8XvYxoB03oA2gIR0CrCX5vcafjdX2UKGgGR0CKMLa4c3l0aAdN6ANoCEdAqw+YSg5BC3V9lChoBkdAiW5CZnctXmgHTegDaAhHQKsP05+6RQt1fZQoaAZHQIV5h5Rjz7NoB03oA2gIR0CrFZRiobXIdX2UKGgGR0CKvs+oLofTaAdN6ANoCEdAqxXCl7+kxnV9lChoBkdAi2Pnz6JqI2gHTegDaAhHQKsdEcfeUIN1fZQoaAZHQIokzyhBZ6loB03oA2gIR0CrHWHpjc2zdX2UKGgGR0CJsQSaEzwdaAdN6ANoCEdAqyUeLxZuAXV9lChoBkdAifLuIyj59GgHTegDaAhHQKslS/5+H8F1fZQoaAZHQItLpN7BwddoB03oA2gIR0CrKznCXQdCdX2UKGgGR0CK/4ASWZ7YaAdN6ANoCEdAqytuinHeanV9lChoBkdAiy6yrPt2LmgHTegDaAhHQKsxFlNlAeJ1fZQoaAZHQItbWPHT7VJoB03oA2gIR0CrMUTq0MPSdX2UKGgGR0CIimg6EJ0GaAdN6ANoCEdAqzdrzRQaaXV9lChoBkdAiwIeMZP2wmgHTegDaAhHQKs3uiosI3R1fZQoaAZHQIqCreGfwqloB03oA2gIR0CrQFO+AVfvdX2UKGgGR0CKShOxjawmaAdN6ANoCEdAq0CbpNbkfnV9lChoBkdAixWDo6jnFGgHTegDaAhHQKtG6DWbw0B1fZQoaAZHQIlOlmFrVONoB03oA2gIR0CrRyD8DSw4dX2UKGgGR0CK2pSNOuaGaAdN6ANoCEdAq0znCKrJbXV9lChoBkdAi8TXH7xd6mgHTegDaAhHQKtNE/Y8Md91fZQoaAZHQIwkS7iADq5oB03oA2gIR0CrUwrPMSsbdX2UKGgGR0CLvGi7CiyqaAdN6ANoCEdAq1NBVjqfOHV9lChoBkdAit9kRJ2+wmgHTegDaAhHQKta81gpjMF1fZQoaAZHQIpewjdHlOpoB03oA2gIR0CrWzvUKArhdX2UKGgGR0CMZP8qnWJ8aAdN6ANoCEdAq2JvdM0xd3V9lChoBkdAjBc2Dg62fGgHTegDaAhHQKtior1dxAB1fZQoaAZHQIsFK2nbZe1oB03oA2gIR0CraFqhlDnedX2UKGgGR0CLklIHTqjaaAdN6ANoCEdAq2iIQUYbbXV9lChoBkdAi6si48U21mgHTegDaAhHQKtukAvtdAx1fZQoaAZHQIvC3cclw99oB03oA2gIR0Crbsa6J66bdX2UKGgGR0CLVoGO+7DmaAdN6ANoCEdAq3U1+EytWHV9lChoBkdAi0bmMwUQCmgHTegDaAhHQKt1eEzwc5t1fZQoaAZHQIusYHJLdvdoB03oA2gIR0CrfhPlMh5gdX2UKGgGR0CKXNtj0+TvaAdN6ANoCEdAq35IEIPbwnV9lChoBkdAi9GUaQ3gk2gHTegDaAhHQKuECq1gH/t1fZQoaAZHQIs3tc8kleFoB03oA2gIR0CrhDbFS88LdX2UKGgGR0CMBCNT987ZaAdN6ANoCEdAq4pEFr2xp3V9lChoBkdAitaJRGc4HWgHTegDaAhHQKuKedYGMXJ1fZQoaAZHQIrsWjdpItloB03oA2gIR0CrkAoVVPvbdX2UKGgGR0CMDqCFK02MaAdN6ANoCEdAq5A4p8WsR3V9lChoBkdAin2PUBnzx2gHTegDaAhHQKuY2Isyzol1fZQoaAZHQIrcyimEXchoB03oA2gIR0CrmTKfvnbJdX2UKGgGR0CKuHyo4uK5aAdN6ANoCEdAq591wT/Q0HV9lChoBkdAimp5Oi35OGgHTegDaAhHQKufoo9cKPZ1fZQoaAZHQIu0mq3mV7hoB03oA2gIR0CrpbdI5HVgdX2UKGgGR0CLkT5qubI+aAdN6ANoCEdAq6XwoE0SAnV9lChoBkdAjAelkYoAn2gHTegDaAhHQKurymaYu011fZQoaAZHQIvaWhsZYPpoB03oA2gIR0Crq/jqv/zbdX2UKGgGR0CMMYYbbUPQaAdN6ANoCEdAq7OSzHCGe3V9lChoBkdAjBSQ2uPmxWgHTegDaAhHQKuz7hegL7Z1fZQoaAZHQIxsvvjOs1doB03oA2gIR0Cru6SUs4DLdX2UKGgGR0CM6NY+0PYnaAdN6ANoCEdAq7vWTxG2C3V9lChoBkdAYbBR0EHMU2gHS8loCEdAq74rNnoPkXV9lChoBkdAjGlqSHM2WWgHTegDaAhHQKvCCiudPLx1fZQoaAZHQIxw6HRCx/xoB03oA2gIR0Crwkc274BWdX2UKGgGR0CL7cn0kGA1aAdN6ANoCEdAq8hdoYekpXV9lChoBkdAi8lrzwtrbmgHTegDaAhHQKvKlRWLgoB1fZQoaAZHQIwGqUgSvkloB03oA2gIR0CrzwwXQ+lkdX2UKGgGR0CJSHy8SPELaAdN6ANoCEdAq89g2CNCJHV9lChoBkdAjDC7FbVz62gHTegDaAhHQKvX7ZIxxkx1fZQoaAZHQIt33BzmwJRoB03oA2gIR0Cr2i0Y8+zMdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.999,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c94b93678909f2e31cb84b91dd535e404d6e1096d9f97b6867e29397efe657be
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1c551c0f6efe55475bc63889e6f871228967f0c9670f0771e1db1e1daa3d34d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ea10e3040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ea10e30d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ea10e3160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ea10e31f0>", "_build": "<function ActorCriticPolicy._build at 0x7f7ea10e3280>", "forward": "<function ActorCriticPolicy.forward at 0x7f7ea10e3310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ea10e33a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ea10e3430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7ea10e34c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ea10e3550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ea10e35e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ea10e3670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7ea10e0d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680757143537185384, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANdR2L4Moxq/WK3iPmRyiT4PgMk+6npsPWoX7z6ALi+/LQPovuLIHb5T/eU+9+mJPiGtKr4JcrU85lAMP1TwHT1HdUe/CkFuvM3xgz/lN3E+3uFLv3uYkb6bnh6+BTdhvo7Yjz4qRb8+UgeqPiECZT6sCjA+g3hNP1faTbvVzee+Uo3WPX8m7D0V+lc+mrzoPi8CFb8YyPC9OxKevtOYyr2C8/A+sFwfO6S/Zb+Qd369eVwtv2TGzDy8rhu/wPqhPC90xb8swgs8FUKKO6+jD76O2I8+KkW/PlIHqj4hAmU+J4cFv2IRn78VWOc9Ku5qvd6uNr4Ojqk92msUPg5xPb/JIBO/TKP8O3BGdj57PIO9rXMDvuo6v7xsJFo/4o79Pac8Kb8Uhh+9NhOGP0S0uj1rfpa/kWFGvXLxOD20AaY8jtiPPipFvz5SB6o+IQJlPujczr4AfUa/2mDGPtphkz7RVeC9jJaYPKoxzj4D9ie/xYqvvmHZBL4F68w+ZtrFPTTbkr52I9G9uOEMP+fjIz7tIUK/y2Q4vlrLej+onm0+j8agvxq2o77i0gS+g5CCvY7Yjz4qRb8+UgeqPiECZT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADBJ2ayAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdgbePQAAAACcsfq/AAAAAGfcpr0AAAAAYUbxPwAAAACt4dE9AAAAAJAq3j8AAAAAOxazvQAAAAD4yfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvvs0tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLuGtD0AAAAAsukAwAAAAAAQXtG9AAAAAI/p/z8AAAAA0b9vPQAAAADrOgFAAAAAANaizr0AAAAAGvPdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJm5JDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARp0m9AAAAALik3b8AAAAAdccDPQAAAAB9bPA/AAAAAFwvnz0AAAAAdmPyPwAAAADwXFg9AAAAAIHF7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpIui2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANBupPQAAAABRNPW/AAAAAJ4Jt70AAAAA30HpPwAAAABRTSC9AAAAALXY2z8AAAAALFixPQAAAADTgPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa9NkQPI4mMAWyUTegDjAF0lEdAqoTigyuZC3V9lChoBkdAibToUzsQd2gHTegDaAhHQKqNa8vmHQB1fZQoaAZHQIa9IPEsJ6ZoB03oA2gIR0CqjZnMdLg5dX2UKGgGR0CIdfLRKHwgaAdN6ANoCEdAqpPgU34sVnV9lChoBkdAiGxQmeDnNmgHTegDaAhHQKqUGGFBY3h1fZQoaAZHQIgWSJTER8NoB03oA2gIR0CqmcP3BYV7dX2UKGgGR0CIb1AfuCwsaAdN6ANoCEdAqpnxDLKV6nV9lChoBkdAh5uiVKPGQ2gHTegDaAhHQKqgCJiy6c11fZQoaAZHQIdgq8Djin5oB03oA2gIR0CqoEDRMN+cdX2UKGgGR0CGmTngYP5IaAdN6ANoCEdAqqhHSfDk2nV9lChoBkdAh0ThmGucMGgHTegDaAhHQKqokT+NtIl1fZQoaAZHQIcJkkOZssRoB03oA2gIR0Cqr5R1X/5tdX2UKGgGR0CAIgqBmPHUaAdN6ANoCEdAqq/KU/wAl3V9lChoBkdAheBhS1mapmgHTegDaAhHQKq1nFQVKwp1fZQoaAZHQIb5tRHf/FRoB03oA2gIR0CqtdAR02cbdX2UKGgGR0CG2s3974SIaAdN6ANoCEdAqrvqtNi6QXV9lChoBkdAh73xs/IKdGgHTegDaAhHQKq8I8La24N1fZQoaAZHQIS3iqOtGNJoB03oA2gIR0CqwzRKg7HRdX2UKGgGR0CF9lA2ycCpaAdN6ANoCEdAqsN5bILgGnV9lChoBkdAh/CLGrCFbmgHTegDaAhHQKrLpEsJ6Y51fZQoaAZHQIjsTzundftoB03oA2gIR0Cqy9kV32VWdX2UKGgGR0CGfWcOskpraAdN6ANoCEdAqtG5jYqXnnV9lChoBkdAilcUIcBEKGgHTegDaAhHQKrR50WdmQN1fZQoaAZHQIlj+ois4kxoB03oA2gIR0Cq1/Tl1bJPdX2UKGgGR0CHht8Sf16FaAdN6ANoCEdAqtgpGhEjPnV9lChoBkdAiZaYWDYh+2gHTegDaAhHQKreP/Q0GeN1fZQoaAZHQIeW7V8Ti85oB03oA2gIR0Cq3ouZkTYedX2UKGgGR0CJn81VHWjHaAdN6ANoCEdAqueDNt65XnV9lChoBkdAidexcVxjrmgHTegDaAhHQKrnt5Sm65J1fZQoaAZHQIgMEasIVudoB03oA2gIR0Cq7YI73fygdX2UKGgGR0CGpSEOAiFCaAdN6ANoCEdAqu2u9OARTXV9lChoBkdAiwoP4/NZ/2gHTegDaAhHQKrzxn1WbPR1fZQoaAZHQIgu9hJAdGRoB03oA2gIR0Cq8/92HLzPdX2UKGgGR0CJIflnyup0aAdN6ANoCEdAqvnAB3iaRnV9lChoBkdAiaP5x7zClGgHTegDaAhHQKr57OKwY+B1fZQoaAZHQIpJNGqgh8poB03oA2gIR0CrAlVMdtEYdX2UKGgGR0CJsUih37k5aAdN6ANoCEdAqwKrF0gbInV9lChoBkdAin9qEnLJS2gHTegDaAhHQKsJSdOqNqB1fZQoaAZHQIpW9F8XvYxoB03oA2gIR0CrCX5vcafjdX2UKGgGR0CKMLa4c3l0aAdN6ANoCEdAqw+YSg5BC3V9lChoBkdAiW5CZnctXmgHTegDaAhHQKsP05+6RQt1fZQoaAZHQIV5h5Rjz7NoB03oA2gIR0CrFZRiobXIdX2UKGgGR0CKvs+oLofTaAdN6ANoCEdAqxXCl7+kxnV9lChoBkdAi2Pnz6JqI2gHTegDaAhHQKsdEcfeUIN1fZQoaAZHQIokzyhBZ6loB03oA2gIR0CrHWHpjc2zdX2UKGgGR0CJsQSaEzwdaAdN6ANoCEdAqyUeLxZuAXV9lChoBkdAifLuIyj59GgHTegDaAhHQKslS/5+H8F1fZQoaAZHQItLpN7BwddoB03oA2gIR0CrKznCXQdCdX2UKGgGR0CK/4ASWZ7YaAdN6ANoCEdAqytuinHeanV9lChoBkdAiy6yrPt2LmgHTegDaAhHQKsxFlNlAeJ1fZQoaAZHQItbWPHT7VJoB03oA2gIR0CrMUTq0MPSdX2UKGgGR0CIimg6EJ0GaAdN6ANoCEdAqzdrzRQaaXV9lChoBkdAiwIeMZP2wmgHTegDaAhHQKs3uiosI3R1fZQoaAZHQIqCreGfwqloB03oA2gIR0CrQFO+AVfvdX2UKGgGR0CKShOxjawmaAdN6ANoCEdAq0CbpNbkfnV9lChoBkdAixWDo6jnFGgHTegDaAhHQKtG6DWbw0B1fZQoaAZHQIlOlmFrVONoB03oA2gIR0CrRyD8DSw4dX2UKGgGR0CK2pSNOuaGaAdN6ANoCEdAq0znCKrJbXV9lChoBkdAi8TXH7xd6mgHTegDaAhHQKtNE/Y8Md91fZQoaAZHQIwkS7iADq5oB03oA2gIR0CrUwrPMSsbdX2UKGgGR0CLvGi7CiyqaAdN6ANoCEdAq1NBVjqfOHV9lChoBkdAit9kRJ2+wmgHTegDaAhHQKta81gpjMF1fZQoaAZHQIpewjdHlOpoB03oA2gIR0CrWzvUKArhdX2UKGgGR0CMZP8qnWJ8aAdN6ANoCEdAq2JvdM0xd3V9lChoBkdAjBc2Dg62fGgHTegDaAhHQKtior1dxAB1fZQoaAZHQIsFK2nbZe1oB03oA2gIR0CraFqhlDnedX2UKGgGR0CLklIHTqjaaAdN6ANoCEdAq2iIQUYbbXV9lChoBkdAi6si48U21mgHTegDaAhHQKtukAvtdAx1fZQoaAZHQIvC3cclw99oB03oA2gIR0Crbsa6J66bdX2UKGgGR0CLVoGO+7DmaAdN6ANoCEdAq3U1+EytWHV9lChoBkdAi0bmMwUQCmgHTegDaAhHQKt1eEzwc5t1fZQoaAZHQIusYHJLdvdoB03oA2gIR0CrfhPlMh5gdX2UKGgGR0CKXNtj0+TvaAdN6ANoCEdAq35IEIPbwnV9lChoBkdAi9GUaQ3gk2gHTegDaAhHQKuECq1gH/t1fZQoaAZHQIs3tc8kleFoB03oA2gIR0CrhDbFS88LdX2UKGgGR0CMBCNT987ZaAdN6ANoCEdAq4pEFr2xp3V9lChoBkdAitaJRGc4HWgHTegDaAhHQKuKedYGMXJ1fZQoaAZHQIrsWjdpItloB03oA2gIR0CrkAoVVPvbdX2UKGgGR0CMDqCFK02MaAdN6ANoCEdAq5A4p8WsR3V9lChoBkdAin2PUBnzx2gHTegDaAhHQKuY2Isyzol1fZQoaAZHQIrcyimEXchoB03oA2gIR0CrmTKfvnbJdX2UKGgGR0CKuHyo4uK5aAdN6ANoCEdAq591wT/Q0HV9lChoBkdAimp5Oi35OGgHTegDaAhHQKufoo9cKPZ1fZQoaAZHQIu0mq3mV7hoB03oA2gIR0CrpbdI5HVgdX2UKGgGR0CLkT5qubI+aAdN6ANoCEdAq6XwoE0SAnV9lChoBkdAjAelkYoAn2gHTegDaAhHQKurymaYu011fZQoaAZHQIvaWhsZYPpoB03oA2gIR0Crq/jqv/zbdX2UKGgGR0CMMYYbbUPQaAdN6ANoCEdAq7OSzHCGe3V9lChoBkdAjBSQ2uPmxWgHTegDaAhHQKuz7hegL7Z1fZQoaAZHQIxsvvjOs1doB03oA2gIR0Cru6SUs4DLdX2UKGgGR0CM6NY+0PYnaAdN6ANoCEdAq7vWTxG2C3V9lChoBkdAYbBR0EHMU2gHS8loCEdAq74rNnoPkXV9lChoBkdAjGlqSHM2WWgHTegDaAhHQKvCCiudPLx1fZQoaAZHQIxw6HRCx/xoB03oA2gIR0Crwkc274BWdX2UKGgGR0CL7cn0kGA1aAdN6ANoCEdAq8hdoYekpXV9lChoBkdAi8lrzwtrbmgHTegDaAhHQKvKlRWLgoB1fZQoaAZHQIwGqUgSvkloB03oA2gIR0CrzwwXQ+lkdX2UKGgGR0CJSHy8SPELaAdN6ANoCEdAq89g2CNCJHV9lChoBkdAjDC7FbVz62gHTegDaAhHQKvX7ZIxxkx1fZQoaAZHQIt33BzmwJRoB03oA2gIR0Cr2i0Y8+zMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.999, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (259 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 898.7888564286666, "std_reward": 55.094718231551994, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T05:59:26.709364"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab877fb758d0b7417a63f44593a7370099b2f4e07273cd82c346f60a05edc10
3
+ size 2136