ppo-LunarLander-v2 / config.json
alkzzz's picture
Upload PPO LunarLander-v2 trained agent
2e09e39
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x789f0b53ecb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x789f0b53ed40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x789f0b53edd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x789f0b53ee60>", "_build": "<function ActorCriticPolicy._build at 0x789f0b53eef0>", "forward": "<function ActorCriticPolicy.forward at 0x789f0b53ef80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x789f0b53f010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x789f0b53f0a0>", "_predict": "<function ActorCriticPolicy._predict at 0x789f0b53f130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x789f0b53f1c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x789f0b53f250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x789f0b53f2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789f0b539940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694592397175363947, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaJIb4ftfa5O4Zwuj5IabVoDeo66mOKOQAAgD8AAIA/87W9PfZkLLrKwQk63h4hM9umsToG4iC5AACAPwAAgD+a/la9w2FJuk8YgbpzZW+19sWTusyKmDkAAIA/AACAP1qnrb3DtTS61r+cO5OEiTe8l6U7cdy1ugAAAAAAAIA/ILUfPp9PRj9K2dU8f7VzvsWZsD2Nmti9AAAAAAAAAACaDPW94arZukp4WTtZSTQ49IO5OxO4groAAIA/AACAPw3dLz6KumU80/B2upH51LhLBfY9VHbFuQAAgD8AAIA/MxuyO8NxObrdmi08oZsuNunNDjlxUio1AACAPwAAgD+aZIQ9n/2Uu1KW27vVnZY8rqkFPcb+f70AAIA/AACAP82gxjspgEW62rAHOBeYSTOgMVS6+8setwAAgD8AAIA/AGTTu4Ur77muu7o79pvqN89ThTsz8JA1AACAPwAAgD9mhg4+j6YPvEuJNjzfy8+62p52veUjrrsAAIA/AACAP8CkCD6gKG4/lpwqPbO8mL7ZHKM9qn1MvQAAAAAAAAAAzZiou64BjrruVc+5NLY+tYiMvDoFG+04AACAPwAAgD8z4xg7j5Yruj7O7brpYui1UVexOpVvCToAAIA/AACAP63RFr5vbRg+qLtGPvR2kL4S42I9Kt7hPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGH8bFS88LeMAWyUTegDjAF0lEdAk2TQWSEDhnV9lChoBkdAYjuQnQY1pGgHTegDaAhHQJNs/el9Brx1fZQoaAZHQGHZHBciW3VoB03oA2gIR0CTcm0pVjqfdX2UKGgGR0BlJPqC6H0saAdN6ANoCEdAk3SgIUrTY3V9lChoBkdAYVZcdo3712gHTegDaAhHQJN69uBMBZJ1fZQoaAZHQGTzMXBP9DRoB03oA2gIR0CTf05GjKxLdX2UKGgGR0BmttUEPlMiaAdN6ANoCEdAk4NiAhB7eHV9lChoBkdAYzybRWtEHGgHTegDaAhHQJOG558jRlZ1fZQoaAZHQGKrtT1kDp1oB03oA2gIR0CTh9zgMtsfdX2UKGgGR0BiKAtL+PzWaAdN6ANoCEdAk4+MC1Z1WHV9lChoBkdAZYt/vOQhfWgHTegDaAhHQJOnEK9f1Hx1fZQoaAZHQGE7UPYnOSpoB03oA2gIR0CTr+tKZlWfdX2UKGgGR0BoLz8+A3DOaAdN6ANoCEdAk7fakRBeHHV9lChoBkdAY5AkHD766GgHTegDaAhHQJO+aB19v0h1fZQoaAZHQGDGj9XLeRBoB03oA2gIR0CTv2eDnNgSdX2UKGgGR0BhCHYxtYSyaAdN6ANoCEdAk8C4g3cYZXV9lChoBkdAYpe2LHdXT2gHTegDaAhHQJPGqTmnwXt1fZQoaAZHQF9tzbvgFX9oB03oA2gIR0CTzu5WRzRydX2UKGgGR0BiioUWVNYbaAdN6ANoCEdAk9PBjSXt0HV9lChoBkdAXZgynDR+jWgHTegDaAhHQJPVPN3W4Ex1fZQoaAZHQGOlWPLgXM1oB03oA2gIR0CT2YX5WRzSdX2UKGgGR0BfbKGxlg+haAdN6ANoCEdAk9yJtm+TNnV9lChoBkdAPMqjvd/KAGgHS/toCEdAk986Skj5bnV9lChoBkdAZ8xNwiqyW2gHTegDaAhHQJPfSYE4ecR1fZQoaAZHQGYk82R7qptoB03oA2gIR0CT4X2lEZzgdX2UKGgGR0BlQA2uPmxMaAdN6ANoCEdAk+IlirksBnV9lChoBkdAY95n8sMAm2gHTegDaAhHQJPoZb5dnkF1fZQoaAZHQDWBgNPP9k1oB00JAWgIR0CT6SBshxHYdX2UKGgGR0BhtqdnTRYzaAdN6ANoCEdAlAQNLcsUZnV9lChoBkdAQQQdIXj2jGgHTQsBaAhHQJQEZ5v99+h1fZQoaAZHQGOhYf4h2W9oB03oA2gIR0CUDDyiEg4fdX2UKGgGR0Bg4pakhzNmaAdN6ANoCEdAlBIDV2A5JnV9lChoBkdAY4mQ0XP7emgHTegDaAhHQJQWgiosI3R1fZQoaAZHQGSFyq+8Gs5oB03oA2gIR0CUFyfukUKzdX2UKGgGR0BgOUCA+Y+jaAdN6ANoCEdAlBgNW2gFo3V9lChoBkdAZbO82aUiZGgHTegDaAhHQJQcADuBtk51fZQoaAZHQFG5obn5i3JoB0vwaAhHQJQg7D1oQFt1fZQoaAZHQGS+4NAkcCJoB03oA2gIR0CUKBMSK3uvdX2UKGgGR0BoL8RODaoNaAdN6ANoCEdAlCmcunMt9XV9lChoBkdAZc98zAN5MWgHTegDaAhHQJQxtMcp9Z11fZQoaAZHQGTFjmjj7yhoB03oA2gIR0CUNWIyTINmdX2UKGgGR0Bg45LZi/fwaAdN6ANoCEdAlDjGkep4r3V9lChoBkdAYwXCv5gw5GgHTegDaAhHQJQ5tMFlkH51fZQoaAZHQGKEmhdt2s9oB03oA2gIR0CUQzWSlnAZdX2UKGgGR0BjvCsEJSiuaAdN6ANoCEdAlERbA57w8XV9lChoBkdAYdTSS/0ulGgHTegDaAhHQJRKTTWoWHl1fZQoaAZHQGVsTQE6kqNoB03oA2gIR0CUSos4DLbIdX2UKGgGR0BlgGZ/kNnXaAdN6ANoCEdAlGH9FOO803V9lChoBkdAYg4NedCmdmgHTegDaAhHQJRrY/Spiqh1fZQoaAZHQGgkQKa5PM1oB03oA2gIR0CUbAurp7kXdX2UKGgGR0BlJWQwK0D2aAdN6ANoCEdAlGzgJ9iMHnV9lChoBkdAbKFTLGJemmgHTVMBaAhHQJRvvwsoUi91fZQoaAZHQGD5YrjHXEtoB03oA2gIR0CUcf7/4qPPdX2UKGgGR0Bh4To0Q9RraAdN6ANoCEdAlHjP863iJnV9lChoBkdAYMs7CBPKuGgHTegDaAhHQJSCPQb+98J1fZQoaAZHQGB6Y95hScdoB03oA2gIR0CUhClVcUuddX2UKGgGR0BfxsPe54GEaAdN6ANoCEdAlIxNJaq0dHV9lChoBkdAUTUz1schkmgHS/hoCEdAlIyZlz2ex3V9lChoBkdAW3fa8Hv+fmgHTegDaAhHQJSPIl2NedF1fZQoaAZHQGK5VDa4+bFoB03oA2gIR0CUka+DOC5FdX2UKGgGR0BhEBwdbPhRaAdN6ANoCEdAlJJiPEKmbnV9lChoBkdATHx3gUDdQGgHS/hoCEdAlJN98NQTEnV9lChoBkdAZbY3y7PIGWgHTegDaAhHQJSY54eLehx1fZQoaAZHQGTakuxrzoVoB03oA2gIR0CUmZ2kSElFdX2UKGgGR0BnKD8gpz91aAdN6ANoCEdAlJ8/x+az/3V9lChoBkdAZX5+2E0zj2gHTegDaAhHQJS64krwvxp1fZQoaAZHQGN0o8hcJMRoB03oA2gIR0CUyCNOdoWYdX2UKGgGR0Bg7miaiKziaAdN6ANoCEdAlMjSBK+SKXV9lChoBkdAXu5spG4I8mgHTegDaAhHQJTJvAFgUlB1fZQoaAZHQGKgSNwR5C5oB03oA2gIR0CUzCf7aZhKdX2UKGgGR0BmNnt6X0GvaAdN6ANoCEdAlM2QD7qIJ3V9lChoBkdASmxd2Pkq+mgHS+NoCEdAlNjitNi6QXV9lChoBkdAZD4YrJ8v3GgHTegDaAhHQJTZw2ZRbbF1fZQoaAZHQGJKEDQqqfhoB03oA2gIR0CU4TVLSNOudX2UKGgGR0Bi0z+NtIkJaAdN6ANoCEdAlOF5obn5i3V9lChoBkdAXtpHZsbedmgHTegDaAhHQJTj5HI6r/91fZQoaAZHQGFtVnM+u/1oB03oA2gIR0CU5lMINVindX2UKGgGR0BgM5ssQNCraAdN6ANoCEdAlObvY8Md93V9lChoBkdAYuhsfq5byGgHTegDaAhHQJTn/ko4MnZ1fZQoaAZHQGLxsHjZL7JoB03oA2gIR0CU7ZQarFOxdX2UKGgGR0Bfi+zdDYywaAdN6ANoCEdAlO6aO1fE43V9lChoBkdARHNKZlWfb2gHS/hoCEdAlPQEALiMpHV9lChoBkdAYX/pTMqz7mgHTegDaAhHQJT1iu7pV0d1fZQoaAZHQEGeOby6MBJoB0vyaAhHQJT3kbrC3w11fZQoaAZHQGYXW4EwFkhoB03oA2gIR0CVEKu8K5TZdX2UKGgGR0AtmZfD1oQGaAdNBgFoCEdAlRLyYPXkHXV9lChoBkdAS7KfUWl/IGgHS/BoCEdAlRmXenAIp3V9lChoBkdAYPTvttygf2gHTegDaAhHQJUZ6EVWS2Z1fZQoaAZHQGOPtLteD4BoB03oA2gIR0CVGoa2F36idX2UKGgGR0Bgql7WuoxYaAdN6ANoCEdAlRtJyIYWL3V9lChoBkdAYqTozvZyuWgHTegDaAhHQJUe/fIjnmt1fZQoaAZHQGAgWIGhVVBoB03oA2gIR0CVKzm/WUbDdX2UKGgGR0Bkf9N8E3bVaAdN6ANoCEdAlSyH/T9bYHV9lChoBkdAYZAj1PFefWgHTegDaAhHQJU3HpX6qKh1fZQoaAZHQGclpWvKU3ZoB03oA2gIR0CVN4IMSbpedX2UKGgGR0Bih1ENOM2naAdN6ANoCEdAlT6/PkaMrHV9lChoBkdAYwz72L5yl2gHTegDaAhHQJVBs5U96kZ1fZQoaAZHQGUb64UeuFJoB03oA2gIR0CVSJc8DB/JdX2UKGgGR0Bi3XK0UoKEaAdN6ANoCEdAlU2VjqfOEHV9lChoBkdAY+BLpRoAXGgHTegDaAhHQJVO2z0HyEt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}