Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- added_tokens.json +10 -0
- config.json +32 -0
- config_molmo.py +60 -0
- generation_config.json +4 -0
- image_preprocessing_molmo.py +569 -0
- merges.txt +0 -0
- model-00001-of-00083.safetensors +3 -0
- model-00002-of-00083.safetensors +3 -0
- model-00003-of-00083.safetensors +3 -0
- model-00004-of-00083.safetensors +3 -0
- model-00005-of-00083.safetensors +3 -0
- model-00006-of-00083.safetensors +3 -0
- model-00007-of-00083.safetensors +3 -0
- model-00008-of-00083.safetensors +3 -0
- model-00009-of-00083.safetensors +3 -0
- model-00010-of-00083.safetensors +3 -0
- model-00011-of-00083.safetensors +3 -0
- model-00012-of-00083.safetensors +3 -0
- model-00013-of-00083.safetensors +3 -0
- model-00014-of-00083.safetensors +3 -0
- model-00015-of-00083.safetensors +3 -0
- model-00016-of-00083.safetensors +3 -0
- model-00017-of-00083.safetensors +3 -0
- model-00018-of-00083.safetensors +3 -0
- model-00019-of-00083.safetensors +3 -0
- model-00020-of-00083.safetensors +3 -0
- model-00021-of-00083.safetensors +3 -0
- model-00022-of-00083.safetensors +3 -0
- model-00023-of-00083.safetensors +3 -0
- model-00024-of-00083.safetensors +3 -0
- model-00025-of-00083.safetensors +3 -0
- model-00026-of-00083.safetensors +3 -0
- model-00027-of-00083.safetensors +3 -0
- model-00028-of-00083.safetensors +3 -0
- model-00029-of-00083.safetensors +3 -0
- model-00030-of-00083.safetensors +3 -0
- model-00031-of-00083.safetensors +3 -0
- model-00032-of-00083.safetensors +3 -0
- model-00033-of-00083.safetensors +3 -0
- model-00034-of-00083.safetensors +3 -0
- model-00035-of-00083.safetensors +3 -0
- model-00036-of-00083.safetensors +3 -0
- model-00037-of-00083.safetensors +3 -0
- model-00038-of-00083.safetensors +3 -0
- model-00039-of-00083.safetensors +3 -0
- model-00040-of-00083.safetensors +3 -0
- model-00041-of-00083.safetensors +3 -0
- model-00042-of-00083.safetensors +3 -0
- model-00043-of-00083.safetensors +3 -0
- model-00044-of-00083.safetensors +3 -0
added_tokens.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<im_col>": 151649,
|
3 |
+
"<im_end>": 151647,
|
4 |
+
"<im_patch>": 151648,
|
5 |
+
"<im_start>": 151646,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|im_end|>": 151645,
|
8 |
+
"<|im_start|>": 151644,
|
9 |
+
"<|image|>": 151650
|
10 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MolmoForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_layer_norm": false,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "config_molmo.MolmoConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_molmo.MolmoForCausalLM"
|
9 |
+
},
|
10 |
+
"clip_qkv": null,
|
11 |
+
"embedding_size": 152064,
|
12 |
+
"hidden_size": 8192,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 59136,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"layer_norm_type": "rms",
|
17 |
+
"max_position_embeddings": 4096,
|
18 |
+
"model_type": "molmo",
|
19 |
+
"norm_after": false,
|
20 |
+
"num_attention_heads": 64,
|
21 |
+
"num_hidden_layers": 80,
|
22 |
+
"num_key_value_heads": 8,
|
23 |
+
"qkv_bias": true,
|
24 |
+
"rope_theta": 1000000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.43.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"use_position_ids": true,
|
30 |
+
"vocab_size": 152064,
|
31 |
+
"weight_tying": false
|
32 |
+
}
|
config_molmo.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
class MolmoConfig(PretrainedConfig):
|
7 |
+
model_type = "molmo"
|
8 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
vocab_size=50304,
|
13 |
+
embedding_size=50304,
|
14 |
+
hidden_size=4096,
|
15 |
+
intermediate_size=11008,
|
16 |
+
num_hidden_layers=32,
|
17 |
+
num_attention_heads=32,
|
18 |
+
num_key_value_heads=None,
|
19 |
+
max_position_embeddings=2048,
|
20 |
+
initializer_range=0.02,
|
21 |
+
use_cache=True,
|
22 |
+
layer_norm_eps: float = 1e-5,
|
23 |
+
rope_theta=10000.0,
|
24 |
+
clip_qkv=None,
|
25 |
+
qkv_bias: bool = False,
|
26 |
+
weight_tying: bool = False,
|
27 |
+
use_position_ids: bool=True,
|
28 |
+
tie_word_embeddings: bool=True,
|
29 |
+
attention_layer_norm: bool=False,
|
30 |
+
norm_after: bool = False,
|
31 |
+
layer_norm_type: str="rms",
|
32 |
+
**kwargs,
|
33 |
+
):
|
34 |
+
self.vocab_size = vocab_size
|
35 |
+
self.embedding_size = embedding_size
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.intermediate_size = intermediate_size
|
39 |
+
self.num_hidden_layers = num_hidden_layers
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.layer_norm_eps = layer_norm_eps
|
42 |
+
self.weight_tying = weight_tying
|
43 |
+
self.use_position_ids = use_position_ids
|
44 |
+
self.attention_layer_norm = attention_layer_norm
|
45 |
+
self.num_key_value_heads = num_key_value_heads
|
46 |
+
self.initializer_range = initializer_range
|
47 |
+
self.use_cache = use_cache
|
48 |
+
self.rope_theta = rope_theta
|
49 |
+
self.clip_qkv = clip_qkv
|
50 |
+
self.qkv_bias = qkv_bias
|
51 |
+
self.norm_after = norm_after
|
52 |
+
self.tie_word_embeddings = tie_word_embeddings
|
53 |
+
self.layer_norm_type = layer_norm_type
|
54 |
+
|
55 |
+
super().__init__(
|
56 |
+
tie_word_embeddings=tie_word_embeddings,
|
57 |
+
**kwargs,
|
58 |
+
)
|
59 |
+
|
60 |
+
MolmoConfig.register_for_auto_class()
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.43.3"
|
4 |
+
}
|
image_preprocessing_molmo.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for Molmo"""
|
2 |
+
from typing import List, Optional, Union, Mapping
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import einops
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms
|
8 |
+
from torchvision.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms.functional import convert_image_dtype
|
10 |
+
|
11 |
+
from transformers.image_utils import (
|
12 |
+
OPENAI_CLIP_MEAN,
|
13 |
+
OPENAI_CLIP_STD,
|
14 |
+
ImageInput,
|
15 |
+
is_valid_image,
|
16 |
+
)
|
17 |
+
from transformers.processing_utils import ImagesKwargs
|
18 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
19 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
26 |
+
"""
|
27 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
31 |
+
The input image.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
list: A list of images.
|
35 |
+
"""
|
36 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
37 |
+
return [img for img_list in images for img in img_list]
|
38 |
+
|
39 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
40 |
+
return images
|
41 |
+
|
42 |
+
elif is_valid_image(images):
|
43 |
+
return [images]
|
44 |
+
|
45 |
+
raise ValueError(f"Could not make batched images from {images}")
|
46 |
+
|
47 |
+
|
48 |
+
def pad_to_bounding_box(
|
49 |
+
image, offset_height, offset_width, target_height,
|
50 |
+
target_width, value=0
|
51 |
+
):
|
52 |
+
height, width = image.shape[:2]
|
53 |
+
after_padding_width = target_width - offset_width - width
|
54 |
+
after_padding_height = target_height - offset_height - height
|
55 |
+
return np.pad(image, [
|
56 |
+
[offset_height, after_padding_height],
|
57 |
+
[offset_width, after_padding_width],
|
58 |
+
[0, 0]
|
59 |
+
], constant_values=value)
|
60 |
+
|
61 |
+
|
62 |
+
def normalize_image(image, offset, scale):
|
63 |
+
image -= np.array(offset, dtype=np.float32)[None, None, :]
|
64 |
+
image /= np.array(scale, dtype=np.float32)[None, None, :]
|
65 |
+
return image
|
66 |
+
|
67 |
+
|
68 |
+
def resize_and_pad(
|
69 |
+
image,
|
70 |
+
desired_output_size,
|
71 |
+
resize_method=InterpolationMode.BILINEAR,
|
72 |
+
pad_value=0,
|
73 |
+
normalize=True,
|
74 |
+
image_mean=OPENAI_CLIP_MEAN,
|
75 |
+
image_std=OPENAI_CLIP_STD,
|
76 |
+
):
|
77 |
+
desired_height, desired_width = desired_output_size
|
78 |
+
height, width = image.shape[:2]
|
79 |
+
|
80 |
+
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
|
81 |
+
# the results after rounding.
|
82 |
+
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
|
83 |
+
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
|
84 |
+
image_scale = min(image_scale_x, image_scale_y)
|
85 |
+
scaled_height = int(np.array(height, np.float32) * image_scale)
|
86 |
+
scaled_width = int(np.array(width, np.float32) * image_scale)
|
87 |
+
|
88 |
+
# if resize_method == "tensorflow":
|
89 |
+
# FIXME remove
|
90 |
+
import tensorflow as tf
|
91 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
92 |
+
image = tf.image.resize(
|
93 |
+
image,
|
94 |
+
[scaled_height, scaled_width],
|
95 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
96 |
+
antialias=True,
|
97 |
+
)
|
98 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
99 |
+
image = image.numpy()
|
100 |
+
# else:
|
101 |
+
# image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
102 |
+
# image = convert_image_dtype(image) # resize in flaot32
|
103 |
+
# image = torchvision.transforms.Resize(
|
104 |
+
# [scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
105 |
+
# )(image)
|
106 |
+
# image = torch.clip(image, 0.0, 1.0)
|
107 |
+
# image = torch.permute(image, [1, 2, 0]).numpy()
|
108 |
+
|
109 |
+
top_pad = (desired_height - scaled_height) // 2
|
110 |
+
left_pad = (desired_width - scaled_width) // 2
|
111 |
+
padding = [
|
112 |
+
[top_pad, desired_height - scaled_height - top_pad],
|
113 |
+
[left_pad, desired_width - scaled_width - left_pad],
|
114 |
+
[0, 0]
|
115 |
+
]
|
116 |
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
117 |
+
image = np.pad(image, padding, constant_values=pad_value)
|
118 |
+
if normalize:
|
119 |
+
image = normalize_image(image, offset=image_mean, scale=image_std)
|
120 |
+
return image, image_mask
|
121 |
+
|
122 |
+
|
123 |
+
def select_tiling(h, w, patch_size, max_num_patches):
|
124 |
+
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
125 |
+
original_size = np.stack([h, w]) # [1, 2]
|
126 |
+
original_res = h * w
|
127 |
+
tilings = []
|
128 |
+
for i in range(1, max_num_patches+1):
|
129 |
+
for j in range(1, max_num_patches+1):
|
130 |
+
if i*j <= max_num_patches:
|
131 |
+
tilings.append((i, j))
|
132 |
+
# sort so argmin and argmax favour smaller tilings in the event of a tie
|
133 |
+
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
|
134 |
+
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
|
135 |
+
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
|
136 |
+
|
137 |
+
# How much we would need to scale the image to fit exactly in each tiling
|
138 |
+
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
|
139 |
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
|
140 |
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
|
141 |
+
if np.all(required_scale < 1):
|
142 |
+
# We are forced to downscale, so try to minimize the amount of downscaling
|
143 |
+
ix = np.argmax(required_scale)
|
144 |
+
else:
|
145 |
+
# Pick the resolution that required the least upscaling so that it most closely fits the image
|
146 |
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
147 |
+
ix = np.argmin(required_scale)
|
148 |
+
return candidate_tilings[ix]
|
149 |
+
|
150 |
+
|
151 |
+
class MolmoImagesKwargs(ImagesKwargs, total=False):
|
152 |
+
max_crops: Optional[int]
|
153 |
+
overlap_margins: Optional[List[int]]
|
154 |
+
base_image_input_size: Optional[List[int]]
|
155 |
+
image_token_length_w: Optional[int]
|
156 |
+
image_token_length_h: Optional[int]
|
157 |
+
image_patch_size: Optional[int]
|
158 |
+
image_padding_mask: Optional[bool]
|
159 |
+
|
160 |
+
|
161 |
+
class MolmoImageProcessor(BaseImageProcessor):
|
162 |
+
"""Preprocess images and multi-model inputs"""
|
163 |
+
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
max_crops: int = 12,
|
167 |
+
overlap_margins: List[int] = (4, 4),
|
168 |
+
base_image_input_size: List[int] = (336, 336),
|
169 |
+
image_token_length_w: int = 12,
|
170 |
+
image_token_length_h: int = 12,
|
171 |
+
image_patch_size: int = 14,
|
172 |
+
image_padding_mask: bool = True,
|
173 |
+
do_normalize: bool = True,
|
174 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
175 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
176 |
+
**kwargs,
|
177 |
+
):
|
178 |
+
super().__init__(**kwargs)
|
179 |
+
self.max_crops = max_crops
|
180 |
+
self.overlap_margins = overlap_margins
|
181 |
+
self.base_image_input_size = base_image_input_size
|
182 |
+
self.image_token_length_w = image_token_length_w
|
183 |
+
self.image_token_length_h = image_token_length_h
|
184 |
+
self.image_patch_size = image_patch_size
|
185 |
+
self.image_padding_mask = image_padding_mask
|
186 |
+
self.do_normalize = do_normalize
|
187 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
188 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
189 |
+
|
190 |
+
def image_to_patches_and_tokens(
|
191 |
+
self,
|
192 |
+
image: ImageInput,
|
193 |
+
image_patch_token_id: int,
|
194 |
+
image_col_token_id: int,
|
195 |
+
image_start_token_id: int,
|
196 |
+
image_end_token_id: int,
|
197 |
+
max_crops: Optional[int] = None,
|
198 |
+
overlap_margins: Optional[List[int]] = None,
|
199 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
200 |
+
image_token_length_w: Optional[int] = None,
|
201 |
+
image_token_length_h: Optional[int] = None,
|
202 |
+
image_patch_size: Optional[int] = None,
|
203 |
+
):
|
204 |
+
"""Preprocesses an image
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
208 |
+
change between images but the other dimension are fixed
|
209 |
+
tokens: (n_tokens,) int32 tokens, pad tokens indicating where to insert the
|
210 |
+
patch features, might include other special tokens as well
|
211 |
+
patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
|
212 |
+
into the `tokens`, negative values indicates patches features to exclude
|
213 |
+
padding_mask: (n_crops, n_patches) what percent of each crop is padding, be None
|
214 |
+
if the image mask is not being used.
|
215 |
+
"""
|
216 |
+
if isinstance(base_image_input_size, int):
|
217 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
218 |
+
|
219 |
+
base_image_input_d = image_patch_size
|
220 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
221 |
+
image_base_patch_w = base_image_input_size[1] // base_image_input_d
|
222 |
+
image_base_patch_h = base_image_input_size[0] // base_image_input_d
|
223 |
+
|
224 |
+
original_image_h, original_image_w = image.shape[:2]
|
225 |
+
crop_size = base_image_input_size[0]
|
226 |
+
|
227 |
+
# Discard this many patches from the (left/top, right/bottom) of crops
|
228 |
+
left_margin, right_margin = overlap_margins
|
229 |
+
# left_margin, right_margin = 2, 2
|
230 |
+
assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
|
231 |
+
total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
|
232 |
+
crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
|
233 |
+
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
|
234 |
+
crop_window_size = crop_window_patches * base_image_input_d
|
235 |
+
tiling = select_tiling(
|
236 |
+
original_image_h - total_margin_pixels,
|
237 |
+
original_image_w - total_margin_pixels,
|
238 |
+
crop_window_size,
|
239 |
+
max_crops
|
240 |
+
)
|
241 |
+
src, img_mask = resize_and_pad(
|
242 |
+
image,
|
243 |
+
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
|
244 |
+
)
|
245 |
+
|
246 |
+
# Now we have to split the image into crops, while keeping track of how each patch in the
|
247 |
+
# each crop should be ordered in the global image, this require a lot of tricky booking
|
248 |
+
n_crops = tiling[0] * tiling[1]
|
249 |
+
patches_arr = []
|
250 |
+
mask_arr = []
|
251 |
+
patch_ordering_arr = []
|
252 |
+
|
253 |
+
# We assume 2x2 pooling, but can allow padding the right/bottom with extra
|
254 |
+
# patches if the number of patches per side is not even
|
255 |
+
assert (crop_patches+1)//2 == image_token_length_h
|
256 |
+
assert (crop_patches+1)//2 == image_token_length_w
|
257 |
+
on = 0
|
258 |
+
on_patch = 0
|
259 |
+
for i in range(tiling[0]):
|
260 |
+
y0 = i*crop_window_size
|
261 |
+
if i == 0:
|
262 |
+
crop_y0 = 0
|
263 |
+
else:
|
264 |
+
crop_y0 = left_margin // 2
|
265 |
+
|
266 |
+
crop_h = image_base_patch_h - (right_margin + left_margin)
|
267 |
+
if i == 0:
|
268 |
+
crop_h += left_margin
|
269 |
+
if i == (tiling[0]-1):
|
270 |
+
crop_h += right_margin
|
271 |
+
for j in range(tiling[1]):
|
272 |
+
x0 = j*crop_window_size
|
273 |
+
if j == 0:
|
274 |
+
crop_x0 = 0
|
275 |
+
else:
|
276 |
+
crop_x0 = left_margin // 2
|
277 |
+
|
278 |
+
crop_w = image_base_patch_w - (right_margin + left_margin)
|
279 |
+
if j == 0:
|
280 |
+
crop_w += left_margin
|
281 |
+
if j == (tiling[1]-1):
|
282 |
+
crop_w += right_margin
|
283 |
+
|
284 |
+
pooled_w = (crop_w + 1) // 2
|
285 |
+
pooled_h = (crop_h + 1) // 2
|
286 |
+
patch_ordering_arr.append(
|
287 |
+
pad_to_bounding_box(
|
288 |
+
np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
|
289 |
+
crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
|
290 |
+
)[:, :, 0]
|
291 |
+
)
|
292 |
+
patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
|
293 |
+
mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
|
294 |
+
|
295 |
+
on += pooled_h*pooled_w
|
296 |
+
on_patch += 1
|
297 |
+
patches = np.stack(patches_arr)
|
298 |
+
patch_ordering = np.stack(patch_ordering_arr)
|
299 |
+
img_mask = np.stack(mask_arr)
|
300 |
+
|
301 |
+
# Switch to [n_crops, n_patches, pixels_per_patch] format
|
302 |
+
image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
|
303 |
+
patches = einops.rearrange(
|
304 |
+
patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
|
305 |
+
dh=base_image_input_d,
|
306 |
+
dw=base_image_input_d,
|
307 |
+
h=image_base_patch_h,
|
308 |
+
w=image_base_patch_w
|
309 |
+
)
|
310 |
+
img_mask = einops.rearrange(
|
311 |
+
img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
|
312 |
+
dh=base_image_input_d,
|
313 |
+
dw=base_image_input_d,
|
314 |
+
h=image_base_patch_h,
|
315 |
+
w=image_base_patch_w
|
316 |
+
)
|
317 |
+
|
318 |
+
img_mask = img_mask.astype(np.float32).mean(axis=-1)
|
319 |
+
patch_ordering = np.reshape(patch_ordering, [-1])
|
320 |
+
valid = patch_ordering >= 0
|
321 |
+
|
322 |
+
# Transpose order, to get left-to-right order instead of crop-by-crop order
|
323 |
+
patch_ordering_rh = np.reshape(
|
324 |
+
patch_ordering,
|
325 |
+
[tiling[0], tiling[1], image_token_length_h, image_token_length_w]
|
326 |
+
)
|
327 |
+
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
|
328 |
+
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
|
329 |
+
|
330 |
+
# The transpose will screw up which patches are masked, project the
|
331 |
+
# new order into sparse structure of `patch_ordering` to fix this
|
332 |
+
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
|
333 |
+
|
334 |
+
# Now build the output tokens
|
335 |
+
h = tiling[0] * crop_window_patches + (right_margin+left_margin)
|
336 |
+
w = tiling[1] * crop_window_patches + (right_margin+left_margin)
|
337 |
+
per_row = np.full(
|
338 |
+
((w+1)//2,),
|
339 |
+
image_patch_token_id,
|
340 |
+
)
|
341 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
342 |
+
|
343 |
+
joint = np.tile(per_row, [(h+1)//2])
|
344 |
+
joint = [
|
345 |
+
[image_start_token_id],
|
346 |
+
joint,
|
347 |
+
[image_end_token_id]
|
348 |
+
]
|
349 |
+
|
350 |
+
# Finally do the same for the global image
|
351 |
+
resized, _ = resize_and_pad(image, base_image_input_size)
|
352 |
+
resized = einops.rearrange(
|
353 |
+
resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
|
354 |
+
dh=base_image_input_d,
|
355 |
+
dw=base_image_input_d,
|
356 |
+
h=image_base_patch_h,
|
357 |
+
w=image_base_patch_w
|
358 |
+
)
|
359 |
+
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
|
360 |
+
|
361 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
362 |
+
patch_ordering = np.where(
|
363 |
+
patch_ordering >= 0,
|
364 |
+
patch_ordering + tokens_per_image,
|
365 |
+
-1
|
366 |
+
)
|
367 |
+
patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
|
368 |
+
per_row = np.full(
|
369 |
+
(image_token_length_w,),
|
370 |
+
image_patch_token_id,
|
371 |
+
)
|
372 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
373 |
+
extra_tokens = np.tile(per_row, [image_token_length_h])
|
374 |
+
joint = [
|
375 |
+
[image_start_token_id],
|
376 |
+
extra_tokens,
|
377 |
+
[image_end_token_id],
|
378 |
+
] + joint
|
379 |
+
|
380 |
+
joint = np.concatenate(joint, 0)
|
381 |
+
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
|
382 |
+
return patches, joint, patch_ordering, img_mask
|
383 |
+
|
384 |
+
def build_image_input_idx(
|
385 |
+
self,
|
386 |
+
image_tokens: np.ndarray,
|
387 |
+
patch_order: np.ndarray,
|
388 |
+
image_patch_token_id: int,
|
389 |
+
no_image: Optional[bool] = None,
|
390 |
+
image_token_length_w: Optional[int] = None,
|
391 |
+
image_token_length_h: Optional[int] = None,
|
392 |
+
):
|
393 |
+
"""Converts `patch_order` into a mapping of token_id -> patch_id"""
|
394 |
+
|
395 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
396 |
+
if no_image is not None and no_image:
|
397 |
+
return np.zeros((0, tokens_per_image), np.int32)
|
398 |
+
|
399 |
+
# Indices to insert the patches
|
400 |
+
image_input_idx = image_tokens == image_patch_token_id
|
401 |
+
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
|
402 |
+
|
403 |
+
if patch_order is not None:
|
404 |
+
n_tokens = image_input_idx.shape[0]
|
405 |
+
patch_order = np.reshape(patch_order, [-1])
|
406 |
+
n_patches = patch_order.shape[0]
|
407 |
+
|
408 |
+
valid = patch_order >= 0
|
409 |
+
n_valid_patches = valid.sum()
|
410 |
+
assert len(image_input_idx) == n_valid_patches
|
411 |
+
|
412 |
+
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
|
413 |
+
sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
|
414 |
+
|
415 |
+
# Project the inverted mapping into same sparse structure
|
416 |
+
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
|
417 |
+
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
|
418 |
+
|
419 |
+
# Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
|
420 |
+
valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
|
421 |
+
image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
|
422 |
+
image_input_idx = image_input_idx*valid - 100*(1 - valid)
|
423 |
+
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
|
424 |
+
return image_input_idx
|
425 |
+
|
426 |
+
def preprocess(
|
427 |
+
self,
|
428 |
+
image: np.ndarray,
|
429 |
+
image_patch_token_id: int,
|
430 |
+
image_col_token_id: int,
|
431 |
+
image_start_token_id: int,
|
432 |
+
image_end_token_id: int,
|
433 |
+
max_crops: Optional[int] = None,
|
434 |
+
overlap_margins: Optional[List[int]] = None,
|
435 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
436 |
+
image_token_length_w: Optional[int] = None,
|
437 |
+
image_token_length_h: Optional[int] = None,
|
438 |
+
image_patch_size: Optional[int] = None,
|
439 |
+
**kwargs,
|
440 |
+
):
|
441 |
+
"""Preprocesses a single image"""
|
442 |
+
|
443 |
+
max_crops = max_crops or self.max_crops
|
444 |
+
overlap_margins = overlap_margins or self.overlap_margins
|
445 |
+
base_image_input_size = base_image_input_size or self.base_image_input_size
|
446 |
+
image_token_length_w = image_token_length_w or self.image_token_length_w
|
447 |
+
image_token_length_h = image_token_length_h or self.image_token_length_h
|
448 |
+
image_patch_size = image_patch_size or self.image_patch_size
|
449 |
+
|
450 |
+
crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
|
451 |
+
image,
|
452 |
+
image_patch_token_id,
|
453 |
+
image_col_token_id,
|
454 |
+
image_start_token_id,
|
455 |
+
image_end_token_id,
|
456 |
+
max_crops,
|
457 |
+
overlap_margins,
|
458 |
+
base_image_input_size,
|
459 |
+
image_token_length_w,
|
460 |
+
image_token_length_h,
|
461 |
+
image_patch_size,
|
462 |
+
)
|
463 |
+
patch_idx = self.build_image_input_idx(
|
464 |
+
image_tokens,
|
465 |
+
patch_ordering,
|
466 |
+
image_patch_token_id,
|
467 |
+
image_token_length_w=image_token_length_w,
|
468 |
+
image_token_length_h=image_token_length_h,
|
469 |
+
)
|
470 |
+
return crops, image_tokens, patch_idx, img_mask
|
471 |
+
|
472 |
+
def multimodal_preprocess(
|
473 |
+
self,
|
474 |
+
images: np.ndarray,
|
475 |
+
tokens: List[int],
|
476 |
+
image_idx: np.ndarray,
|
477 |
+
sequence_length: int,
|
478 |
+
image_patch_token_id: int,
|
479 |
+
image_col_token_id: int,
|
480 |
+
image_start_token_id: int,
|
481 |
+
image_end_token_id: int,
|
482 |
+
**kwargs,
|
483 |
+
):
|
484 |
+
"""Merge images and text tokens into multi-modal features for the model
|
485 |
+
|
486 |
+
:param images: images to use as input
|
487 |
+
:param tokens: input text tokens
|
488 |
+
:param image_idx: where to insert the images into `tokens`
|
489 |
+
:params image_patch_token_id: id to use of tokens that will contain image features
|
490 |
+
:params image_col_token_id: token id for image column special tokens
|
491 |
+
:params image_start_token_id: token id for image start special tokens
|
492 |
+
:params image_end_token_id: token id for image end special tokens
|
493 |
+
:params kwargs: override preprocessor default args
|
494 |
+
"""
|
495 |
+
max_total_crops = kwargs.get("max_crops") or self.max_crops
|
496 |
+
image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
|
497 |
+
image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
|
498 |
+
image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
|
499 |
+
base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
|
500 |
+
image_num_patch = (
|
501 |
+
base_image_input_size[0] // image_patch_size,
|
502 |
+
base_image_input_size[1] // image_patch_size,
|
503 |
+
)
|
504 |
+
image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
|
505 |
+
|
506 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
507 |
+
n_pixels = image_patch_size * image_patch_size * 3
|
508 |
+
n_patches = image_num_patch[0] * image_num_patch[1]
|
509 |
+
|
510 |
+
if images is None:
|
511 |
+
return {
|
512 |
+
"input_ids": tokens,
|
513 |
+
"images": None,
|
514 |
+
"image_input_idx": None
|
515 |
+
}
|
516 |
+
else:
|
517 |
+
n = len(images)
|
518 |
+
all_crops = []
|
519 |
+
all_image_idx = []
|
520 |
+
out_tokens = []
|
521 |
+
all_crop_masks = []
|
522 |
+
|
523 |
+
for ix in range(n):
|
524 |
+
token_ix = image_idx[ix]
|
525 |
+
crops, image_tokens, patch_idx, img_mask = self.preprocess(
|
526 |
+
images[ix],
|
527 |
+
image_patch_token_id,
|
528 |
+
image_col_token_id,
|
529 |
+
image_start_token_id,
|
530 |
+
image_end_token_id,
|
531 |
+
**kwargs,
|
532 |
+
)
|
533 |
+
|
534 |
+
if token_ix == -1: # -1 is an image inserted at the very start
|
535 |
+
start = 0
|
536 |
+
token_ix = 0
|
537 |
+
end = 0
|
538 |
+
else:
|
539 |
+
start = 0 if ix == 0 else image_idx[ix-1] + 1
|
540 |
+
end = token_ix + 1
|
541 |
+
|
542 |
+
all_image_idx.append(patch_idx + token_ix)
|
543 |
+
all_crops.append(crops)
|
544 |
+
out_tokens.append(tokens[start:token_ix])
|
545 |
+
out_tokens.append(image_tokens)
|
546 |
+
if ix == (n - 1):
|
547 |
+
out_tokens.append(tokens[end:])
|
548 |
+
if image_padding_mask:
|
549 |
+
all_crop_masks.append(img_mask)
|
550 |
+
|
551 |
+
input_ids = np.concatenate(out_tokens, 0)
|
552 |
+
images = np.concatenate(all_crops, 0)
|
553 |
+
image_input_idx = np.concatenate(all_image_idx, 0)
|
554 |
+
if image_padding_mask:
|
555 |
+
image_masks = np.concatenate(all_crop_masks, 0)
|
556 |
+
else:
|
557 |
+
image_masks = None
|
558 |
+
|
559 |
+
out = {
|
560 |
+
"input_ids": input_ids,
|
561 |
+
"images": images,
|
562 |
+
"image_input_idx": image_input_idx
|
563 |
+
}
|
564 |
+
if image_masks is not None:
|
565 |
+
out["image_masks"] = image_masks
|
566 |
+
return out
|
567 |
+
|
568 |
+
|
569 |
+
MolmoImageProcessor.register_for_auto_class()
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5027bfc3649b4bb4fb35e5be030dcfeb84f0d38880e56454d818092f4989e339
|
3 |
+
size 4987060576
|
model-00002-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1cc3aa5377ed4604299078f9106c228d7e08da1cb173b680274eee7cd440dae
|
3 |
+
size 4748125472
|
model-00003-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2e5c5b0cf708950900cddde59fa3b56b0f5f89cd307f96c7634a3d810652f5a
|
3 |
+
size 3846325304
|
model-00004-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:439ac00ade686bf9af4aac0c03d41da02e4c93a56769fe6ffa48472bf6c94368
|
3 |
+
size 3510739800
|
model-00005-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89861d9233c358a6db60efab583c77784ebdee4d4e30e860f3f55bcae4c9cdc2
|
3 |
+
size 3510739800
|
model-00006-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:494de8dd6ff50adeac7e92a53ab057e04c19748beee53601345731814b830240
|
3 |
+
size 3510739800
|
model-00007-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e196c810473673bc7ccc015970ae72a45a2ed43e364e691d40105bd088b1c240
|
3 |
+
size 3510739800
|
model-00008-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ef4081b8fbf67b7a5ec34ed9167e4cd8aa0950cb039300a1c9caf5adc56d2aa
|
3 |
+
size 3510739800
|
model-00009-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cbda5d6ff2afd461826b7feab07dbfea21cf8f8a9ce122c61ae73c5f51edaac
|
3 |
+
size 3510739800
|
model-00010-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0469e47cb78e5685fcd90d7ab8871311ea7c8eaadd3564fb7d0498db0eeb5090
|
3 |
+
size 3510739800
|
model-00011-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc0aea52fdc716d72e6ae9457a21788324eeb9581984409d4531ad4b26ea55e
|
3 |
+
size 3510739792
|
model-00012-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bda2bf30ef4903b8ca8cc03ed917a93ac25bc981496a583578328fd7f899e736
|
3 |
+
size 3510739808
|
model-00013-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb1a0125fcc9ed788d9251a02867a9900d411643839fdff4a1cbdc5291545e1
|
3 |
+
size 3510739808
|
model-00014-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dfd129c7c4310b2dfa2586552b927b95eb28c5b8de84775a744a8be870f19dd
|
3 |
+
size 3510739808
|
model-00015-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0046b0763b8cf9cd100ee51fb8440a8b90174764e1e620e6dc44f8f1bb60956e
|
3 |
+
size 3510739808
|
model-00016-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca6205a2ba7dd0a0f4648f17ba83345a747ac00087308ff8994b5c408b8d42b9
|
3 |
+
size 3510739808
|
model-00017-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:476c85010940c0dcaf22b91b9e354deb44aea785e1c24d647fe8683682070762
|
3 |
+
size 3510739808
|
model-00018-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c50af8499746df17e7f67ceec754313fad39389de2fc0c2e7165f2f288a9c1e3
|
3 |
+
size 3510739808
|
model-00019-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:193de920a1d37b44c478bdef9b10bd2da721a1efa0550d530de05abe6e05ccbf
|
3 |
+
size 3510739808
|
model-00020-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a2448617f3927b8a4e75f9953c1dbd398e68282e662b4fe03cc3430dfcb14df
|
3 |
+
size 3510739808
|
model-00021-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81736cc90cfc2d5f96786eb864ba5c9499a54256209a2dbaab4bc53bba2ca8f7
|
3 |
+
size 3510739808
|
model-00022-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:121d0a02ee908944e8477f89b61972387224c6944e5ff8d0d89dca00fb15e4df
|
3 |
+
size 3510739808
|
model-00023-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba960e96b20901a97d8ab4dd63577c57b4115836f4faf46cfd9e9ef01186f7dd
|
3 |
+
size 3510739808
|
model-00024-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba41eb0b90b1f5ae7f72e88e32429bd2a3f8ff8073d99efbf2c048cf66b9ad78
|
3 |
+
size 3510739808
|
model-00025-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad847636f627f05d37ab7c96bf8b39b37da677d290ec758425e9f84aab2420ee
|
3 |
+
size 3510739808
|
model-00026-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:239e7422ffeea9561dabd94be05cbc99489219f556ccce468caa9fc601682fe9
|
3 |
+
size 3510739808
|
model-00027-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e85365a207fe405f7062b12389c8f26a0e9a9cb0be3bbb039b2ecdadb18cb00c
|
3 |
+
size 3510739808
|
model-00028-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ea35ccd0a85cf2e3ef4f28f355e8fabbf1a7ff20a5dd8437549803841758961
|
3 |
+
size 3510739808
|
model-00029-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44a12e4589f4c20a4065fabad5c8fe3ddc0e373b640b4a869d17f595fbf6aee
|
3 |
+
size 3510739808
|
model-00030-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ac210af50eddf60604c7a8c793bcfcb3b26144c42231fd8485ccb1a3a6bf444
|
3 |
+
size 3510739808
|
model-00031-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b61c5215ac70a00a50c0e3aa3a2efe635683a10cee509983b194cdd5434bb2
|
3 |
+
size 3510739808
|
model-00032-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a3ff0e6a48b91a6c36de5568cec3975530377df14b275f463cd33e1f5f600e
|
3 |
+
size 3510739808
|
model-00033-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e0950d7c66ac9fe3fdbe5a6fbb8af46ae30d5da0ab75fb37cce25ed18849a77
|
3 |
+
size 3510739808
|
model-00034-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b35d01cd2551ea952a66f0dc99994da13b0585991914def92744f49d079471b0
|
3 |
+
size 3510739808
|
model-00035-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbc5e17860c5cb786b97e843e61489c806ba4b3f81805efd517272c4cdef4912
|
3 |
+
size 3510739808
|
model-00036-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04e473ed195a967e28ce494561ae17bc1b0b1b8ba9bce8e916a000477f294d1f
|
3 |
+
size 3510739808
|
model-00037-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9cb9dbeb0d9b9fb1414421c40fb77887ae2c5a72ae2114538322b5468340d44
|
3 |
+
size 3510739808
|
model-00038-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f04c5bcdce77116fa013fe8bec74149986c7e181b831d5cbf2336746ed5f789
|
3 |
+
size 3510739808
|
model-00039-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d494a0cdb3d81d12b57452317fcb6c22e2f27d4d1e5d1d57d14e212461ec6d85
|
3 |
+
size 3510739808
|
model-00040-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b93a4a502934019d5c9854f89ed555067975262d22fce5622ca320f1581ee498
|
3 |
+
size 3510739808
|
model-00041-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d01aab48a7a5fcf935597a460bc6683f1865c56495feded7ee2d8d005a39af80
|
3 |
+
size 3510739808
|
model-00042-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a252102c2608a674a04ec7592777256506508a31a03024864177437c4e59963
|
3 |
+
size 3510739808
|
model-00043-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:011433574b832a224274bffbe56a2fdb62f3e47f81aff71b8fb14b35a7a15d1e
|
3 |
+
size 3510739808
|
model-00044-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f3a810ade5fc94a14c7c7e21a85722a5a2da4c1fe1bb36d7b7a79a73a30e98d
|
3 |
+
size 3510739808
|