File size: 6,558 Bytes
130d2f2
 
 
 
 
 
ffdda66
 
 
 
130d2f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8572c4
130d2f2
 
 
ffdda66
130d2f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8572c4
 
130d2f2
 
 
 
 
 
 
 
d8572c4
 
 
 
 
 
130d2f2
 
 
 
ffdda66
 
 
 
 
 
 
 
 
 
 
 
 
 
130d2f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
Processor class for Molmo.
"""

from typing import Optional

import PIL
from PIL import ImageOps
from PIL.Image import Image

try:
    from typing import Unpack
except ImportError:
    from typing_extensions import Unpack

import numpy as np
import torch

from transformers.image_utils import ImageInput
from transformers.processing_utils import (
    TextKwargs,
    ProcessingKwargs,
    ProcessorMixin,
)

from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
from transformers.utils import logging

from transformers import AutoTokenizer
from .image_preprocessing_molmo import MolmoImagesKwargs, MolmoImageProcessor


logger = logging.get_logger(__name__)


DEFAULT_IMAGE_PATCH_TOKEN = f"<im_patch>"
DEFAULT_IM_START_TOKEN = f"<im_start>"
DEFAULT_IM_END_TOKEN = f"<im_end>"
DEFAULT_IM_COL_TOKEN = f"<im_col>"
IMAGE_PROMPT = "<|image|>"

EXTRA_TOKENS = (DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_COL_TOKEN, IMAGE_PROMPT)


def get_special_token_ids(tokenizer):
    ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
    assert len(ids) == len(EXTRA_TOKENS)
    return {k: i for k, i in zip(EXTRA_TOKENS, ids)}


class MolmoTextKwargs(TextKwargs, total=False):
    style: Optional[str]
    system_prompt: Optional[str]
    message_format: Optional[str]
    always_start_with_space: Optional[bool]
    sequence_length: Optional[int]


class MolmoProcessorKwargs(ProcessingKwargs, total=False):
    text_kwargs: MolmoTextKwargs
    images_kwargs: MolmoImagesKwargs
    _defaults = {
        "images_kwargs": {
            "max_crops": 12,
            "overlap_margins": [4, 4],
            "base_image_input_size": [336, 336],
            "image_token_length_w": 12,
            "image_token_length_h": 12,
            "image_patch_size": 14,
            "image_padding_mask": True,
        },
        "text_kwargs": {
            "style": "long_caption",
            "system_prompt": "none",
            "message_format": "role",
            "always_start_with_space": True,
            "sequence_length": 1536,
            "padding": False,
        },
    }


class MolmoProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("GPT2Tokenizer", "GPT2TokenizerFast")

    def __init__(self, image_processor: MolmoImageProcessor = None, tokenizer : AutoTokenizer = None, **kwargs):
        # self.image_processor = image_processor
        # self.tokenizer = tokenizer
        super().__init__(image_processor, tokenizer)
        self._special_tokens = None

    @property
    def special_token_ids(self):
        if self._special_tokens is None:
            self._special_tokens = get_special_token_ids(self.tokenizer)
        return self._special_tokens

    def get_tokens_input(self, prompt, message_format, always_start_with_space):
        if message_format == "none" or message_format is None:
            pass
        elif message_format == "role":
            prompt = "User: " + prompt + " Assistant:"
        else:
            raise NotImplementedError(f"Message format {message_format} not implemented")

        if always_start_with_space:
            prompt = " " + prompt

        tokens = self.tokenizer.encode(prompt, add_special_tokens=False)

        return tokens

    def process(
        self,
        text: TextInput = None,
        images: ImageInput = None,
        *,
        tokens: Optional[PreTokenizedInput] = None,
        **kwargs: Unpack[MolmoProcessorKwargs],
    ):
        output_kwargs = self._merge_kwargs(
            MolmoProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if tokens is None:
            tokens = self.get_tokens_input(
                text,
                output_kwargs["text_kwargs"]["message_format"],
                output_kwargs["text_kwargs"]["always_start_with_space"],
            )

        image_token_id = self.special_token_ids[IMAGE_PROMPT]

        if images is not None:
            if not isinstance(images, (list, tuple)):
                images = [images]
            image_arrays = []
            for image in images:
                if isinstance(image, Image):
                    image = image.convert("RGB")
                    # Handle images with EXIF orientation tags, which PIL will ignore by default
                    # https://github.com/python-pillow/Pillow/issues/4703
                    img = ImageOps.exif_transpose(image)
                    image_arrays.append(np.array(image))
                else:
                    assert len(image.shape) == 3 and image.shape[-1] == 3
                    image_arrays.append(image.astype(np.uint8))
            images = image_arrays
            # For now only support inserting images at the start
            image_idx = [-1]*len(images)
        else:
            image_idx = None

        sequence_length = output_kwargs["text_kwargs"]["sequence_length"]

        image_patch_token_id = self.special_token_ids[DEFAULT_IMAGE_PATCH_TOKEN]
        image_col_token_id = self.special_token_ids[DEFAULT_IM_COL_TOKEN]
        image_start_token_id = self.special_token_ids[DEFAULT_IM_START_TOKEN]
        image_end_token_id = self.special_token_ids[DEFAULT_IM_END_TOKEN]
        out = self.image_processor.multimodal_preprocess(
            images=images,
            image_idx=image_idx,
            tokens=np.asarray(tokens).astype(np.int32),
            sequence_length=sequence_length,
            image_patch_token_id=image_patch_token_id,
            image_col_token_id=image_col_token_id,
            image_start_token_id=image_start_token_id,
            image_end_token_id=image_end_token_id,
            **output_kwargs["images_kwargs"]
        )

        # Prepend BOS
        # qwen2 and olmo do not have a BOS, and instead use EOS as a generic seperator token.
        bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
        decoder_input_tokens = np.pad(out["input_ids"], [[1, 0]], constant_values=bos)
        out["input_ids"] = decoder_input_tokens
        if "image_input_idx" in out:
            # Shift patch mapping up by one since we added BOS
            image_input_idx = out["image_input_idx"]
            out["image_input_idx"] = np.where(image_input_idx < 0, image_input_idx, image_input_idx + 1)

        for k, v in out.items():
            out[k] = torch.from_numpy(v)

        return out


MolmoProcessor.register_for_auto_class()