diff --git "a/modeling_molmo.py" "b/modeling_molmo.py" new file mode 100644--- /dev/null +++ "b/modeling_molmo.py" @@ -0,0 +1,2621 @@ +import logging +import math +from copy import deepcopy +from dataclasses import fields, dataclass, replace +from enum import Enum +from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping + +import torch +from einops import einsum, einops +from transformers import PreTrainedModel, GenerationConfig +from transformers.cache_utils import Cache +from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput +from transformers.models.auto import AutoModelForCausalLM +from torch import nn + +from .config_molmo import MolmoConfig +from torch.nn import functional as F + + +log = logging.getLogger(__name__) + + +class BufferCache(dict, MutableMapping[str, torch.Tensor]): + """ + Cache for attention biases and other things that would normally be stored as buffers. + We avoid using buffers because we've run into various issues doing so with FSDP. + In general it appears the way FSDP handles buffers is not well-defined. + It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid + since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into + NaNs when they're synchronized due to casting or some other issue. + """ + + +class StrEnum(str, Enum): + def __str__(self) -> str: + return self.value + + def __repr__(self) -> str: + return f"'{str(self)}'" + + +class ImageProjectType(StrEnum): + mlp = "mlp" + mlpx2 = "2mlp" + linear = "linear" + + +class ImagePooling2DType(StrEnum): + attention = "attention" + attention_meanq = "attention-meanq" + attention_2wide = "attention_2wide" + attention_v2 = "attention-v2" + none = "none" + stack = "stack" + + +class ActivationType(StrEnum): + quick_gelu = "quick_gelu" + gelu = "gelu" + gelu_tanh = "gelu_tanh" + relu = "relu" + silu = "silu" + llama_geglu = "llama_geglu" + llama_geglu_tanh = "llama_geglu_tanh" + llama_swiglu = "llama_swiglu" + swiglu = "swiglu" + + +def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False): + """ + Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf`` + is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``. + """ + if check_neg_inf: + x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min) + if check_pos_inf: + x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max) + + +class MolmoConfigurationError(Exception): + pass + + +def _non_meta_init_device(config) -> torch.device: + if config.init_device is not None and config.init_device != "meta": + return torch.device(config.init_device) + else: + return torch.device("cuda" if torch.cuda.is_available() else "cpu") + + +class RotaryEmbedding(nn.Module): + """ + [Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864). + """ + + def __init__(self, config: MolmoConfig, cache: BufferCache): + super().__init__() + self.config = config + self.__cache = cache + # Warm up cache. + self.get_rotary_embedding( + config.max_position_embeddings or config.max_sequence_length, + _non_meta_init_device(config) + ) + + def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: + if ( + (pos_sin := self.__cache.get("rope_pos_sin")) is not None + and (pos_cos := self.__cache.get("rope_pos_cos")) is not None + and pos_sin.shape[-2] >= seq_len + and pos_cos.shape[-2] >= seq_len + ): + if pos_sin.device != device: + pos_sin = pos_sin.to(device) + self.__cache["rope_pos_sin"] = pos_sin + if pos_cos.device != device: + pos_cos = pos_cos.to(device) + self.__cache["rope_pos_cos"] = pos_cos + return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :] + + with torch.autocast(device.type, enabled=False): + dim = self.config.d_model // self.config.n_heads + inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim)) + seq = torch.arange(seq_len, device=device, dtype=torch.float) + freqs = torch.einsum("i , j -> i j", seq, inv_freq) + if self.config.rope_impl == "cockatoo": + positions = freqs.repeat_interleave(2, dim=-1) + else: + positions = torch.cat((freqs, freqs), dim=-1) + pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :] + self.__cache["rope_pos_sin"] = pos_sin + self.__cache["rope_pos_cos"] = pos_cos + return pos_sin, pos_cos + + def rotate_half(self, x: torch.Tensor) -> torch.Tensor: + B, nh, T, hs = x.size() + x = x.view(B, nh, T, 2, hs // 2) + x1, x2 = x.unbind(dim=-2) + return torch.cat((-x2, x1), dim=-1) + + def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor: + B, nh, T, hs = x.size() + x = x.view(B, nh, T, hs // 2, 2) + x1, x2 = x.unbind(dim=-1) + x = torch.stack((-x2, x1), dim=-1) + return x.view(B, nh, T, hs) + + def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor: + if self.config.rope_impl == "cockatoo": + return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype) + else: + return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype) + + def forward( + self, + q: torch.Tensor, + k: torch.Tensor, + position_ids: Optional[torch.Tensor] = None + ) -> Tuple[torch.Tensor, torch.Tensor]: + if self.config.rope_full_precision: + q_, k_ = q.float(), k.float() + else: + q_, k_ = q, k + + with torch.autocast(q.device.type, enabled=False): + batch_size = q_.shape[0] + query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None + if position_ids is not None: + freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length) + else: + freqs_cis_len = key_len + pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device) + pos_sin = pos_sin.type_as(q_) + pos_cos = pos_cos.type_as(q_) + if position_ids is not None: + assert query_len == key_len, "Query and key lengths must be equal when using position IDs." + pos_sin = pos_sin[0, 0][position_ids].view( + (batch_size, 1, key_len, pos_sin.shape[-1]) + ) + pos_cos = pos_cos[0, 0][position_ids].view( + (batch_size, 1, key_len, pos_cos.shape[-1]) + ) + q_ = self.apply_rotary_pos_emb( + pos_sin[:, :, key_len - query_len : key_len, :], + pos_cos[:, :, key_len - query_len : key_len, :], + q_, + ) + k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_) + return q_.type_as(q), k_.type_as(k) + + +class MolmoBlock(nn.Module): + """ + A base class for transformer block implementations. + """ + + def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache): + super().__init__() + self.layer_id = layer_id + self.config = config + self.hidden_size = ( + config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model + ) + self.__cache = cache + self._activation_checkpoint_fn = None + + # Dropout. + self.dropout = Dropout(config.residual_dropout, mask_p=config.response_residual_dropout) + + # Layer norms. + self.k_norm: Optional[LayerNormBase] = None + self.q_norm: Optional[LayerNormBase] = None + if config.attention_layer_norm: + assert config.effective_n_kv_heads is not None + self.k_norm = LayerNormBase.build( + config, + size=(config.d_model // config.n_heads) * config.effective_n_kv_heads, + elementwise_affine=config.attention_layer_norm_with_affine, + ) + self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine) + + # Make sure QKV clip coefficient is positive, otherwise it's not well-defined. + if config.clip_qkv is not None: + assert config.clip_qkv > 0 + + # Activation function. + self.act = Activation.build(config) + assert (self.act.output_multiplier * self.hidden_size) % 1 == 0 + + # Attention output projection. + input_dim = config.d_model + self.attn_out = nn.Linear( + input_dim, config.d_model, + bias=config.include_bias, + device=config.init_device + ) + + # Feed-forward output projection. + self.ff_out = nn.Linear( + int(self.act.output_multiplier * self.hidden_size), + config.d_model, + bias=config.include_bias, + device=config.init_device, + ) + self.ff_out._is_residual = True # type: ignore + + # Rotary embeddings. + if self.config.rope: + self.rotary_emb = RotaryEmbedding(config, self.__cache) + + self.flash_attn_func = None + if config.attention_type == "flash": + try: + from flash_attn import flash_attn_func # type: ignore + + self.flash_attn_func = flash_attn_func + except ModuleNotFoundError: + pass + + def reset_parameters(self): + if self.k_norm is not None: + self.k_norm.reset_parameters() + if self.q_norm is not None: + self.q_norm.reset_parameters() + init_weights( + self.config, + self.attn_out, + d=self.config.d_model, + layer_id=self.layer_id, + type_of_module=ModuleType.out_module, + ) + init_weights( + self.config, + self.ff_out, + d=self.ff_out.in_features, + layer_id=self.layer_id, + type_of_module=ModuleType.out_module, + ) + + @classmethod + def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor: + target_dtype = input_dtype + # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function + # `is_autocast_cpu_enabled()` for CPU autocast. + # See https://github.com/pytorch/pytorch/issues/110966. + if bias.device.type == "cuda" and torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled(): + target_dtype = torch.get_autocast_cpu_dtype() + if bias.dtype != target_dtype: + bias = bias.to(target_dtype) + ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False) + return bias + + def _scaled_dot_product_attention( + self, + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + attn_mask: Optional[torch.Tensor] = None, + drop_mask: Optional[torch.Tensor] = None, + dropout_p: float = 0.0, + response_dropout_p: float = 0.0, + is_causal: bool = False, + ) -> torch.Tensor: + """ + Computes scaled dot product attention on query, key and value tensors, using an optional + attention mask if passed, and applying dropout if a probability greater than 0.0 is specified. + """ + if attn_mask is not None: + attn_mask = attn_mask.to(q.device) + + if self.flash_attn_func is not None and attn_mask is None: + r = self.flash_attn_func( + q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal + ) + return r.transpose(1, 2) + else: + # torch's sdpa doesn't support GQA, so we're doing this + assert k.size(1) == v.size(1) + num_kv_heads = k.size(1) + num_q_heads = q.size(1) + if num_q_heads != num_kv_heads: + assert num_q_heads % num_kv_heads == 0 + k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) + v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) + + return F.scaled_dot_product_attention( + q, + k, + v, + attn_mask=attn_mask, + dropout_p=dropout_p, + is_causal=is_causal, + ) + + def attention( + self, + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + attention_bias: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + drop_mask: Optional[torch.Tensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: + B, T, C = q.size() # batch size, sequence length, d_model + dtype = k.dtype + + # Optionally apply layer norm to keys and queries. + if self.q_norm is not None and self.k_norm is not None: + q = self.q_norm(q).to(dtype=dtype) + k = self.k_norm(k).to(dtype=dtype) + + # Move head forward to be next to the batch dim. + # shape: (B, nh, T, hs) + q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2) + # shape: (B, n_kv_h, T, hs) + k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2) + # shape: (B, n_kv_h, T, hs) + v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2) + + if self.config.use_position_ids and self.config.rope: + # Apply rotary embeddings + q, k = self.rotary_emb(q, k, position_ids=position_ids) + + if layer_past is not None: + past_key, past_value = layer_past + k = torch.cat((past_key.to(k.device), k), dim=-2) + v = torch.cat((past_value.to(v.device), v), dim=-2) + + present = (k, v) if use_cache else None + query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None + + if not self.config.use_position_ids and self.config.rope: + # Apply rotary embeddings + q, k = self.rotary_emb(q, k) + + if attention_bias is not None: + # Resize and cast attention bias. + # The current dtype of the attention bias might not match the dtype that the SDP attn function will + # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding + # as down-casting the attention bias to the autocast precision will result in -infs, which will + # cause the SDP attn function to produce NaNs. + attention_bias = self._cast_attn_bias( + attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype + ) + + # Get the attention scores. + # shape: (B, nh, T, hs) + att = self._scaled_dot_product_attention( + q, + k, + v, + attn_mask=attention_bias, + drop_mask=drop_mask, + dropout_p=0.0 if not self.training else self.config.attention_dropout, + response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout, + is_causal=attention_bias is None, + ) + + # Re-assemble all head outputs side-by-side. + att = att.transpose(1, 2).contiguous().view(B, T, C) + + # Apply output projection. + return self.attn_out(att), present + + def forward( + self, + x: torch.Tensor, + attention_bias: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.Tensor] = None, + drop_mask: Optional[torch.Tensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: + raise NotImplementedError + + @classmethod + def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache): + if config.block_type == "sequential": + return MolmoSequentialBlock(layer_id, config, cache) + elif config.block_type == "llama": + return OLMoLlamaBlock(layer_id, config, cache) + else: + raise NotImplementedError(f"Unknown block type: '{config.block_type}'") + + +class OLMoLlamaBlock(MolmoBlock): + """ + This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` + (plus another skip connection). This block is similar to `MolmoSequentialBlock` + but some operations have slightly different implementations to imitate the + behavior of Llama. + """ + + def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache): + super().__init__(layer_id, config, cache) + # Layer norms. + self.attn_norm = LayerNorm.build(config) + self.ff_norm = LayerNorm.build(config) + self.__cache = cache + + # Attention input projection. Projects x -> (q, k, v) + q_proj_out_dim = config.d_model + k_proj_out_dim = config.effective_n_kv_heads * (config.d_model // config.n_heads) + v_proj_out_dim = config.effective_n_kv_heads * (config.d_model // config.n_heads) + + self.q_proj = nn.Linear( + config.d_model, q_proj_out_dim, bias=config.qkv_bias, device=config.init_device + ) + self.k_proj = nn.Linear( + config.d_model, k_proj_out_dim, bias=config.qkv_bias, device=config.init_device + ) + self.v_proj = nn.Linear( + config.d_model, v_proj_out_dim, bias=config.qkv_bias, device=config.init_device + ) + + # Feed-forward input projection. + self.ff_proj1 = nn.Linear( + config.d_model, self.hidden_size // 2, bias=False, device=config.init_device + ) + self.ff_proj2 = nn.Linear( + config.d_model, self.hidden_size // 2, bias=False, device=config.init_device + ) + if self.config.norm_after: + raise NotImplementedError() + + def reset_parameters(self): + super().reset_parameters() + self.attn_norm.reset_parameters() + self.ff_norm.reset_parameters() + # NOTE: the standard deviation for these weights does not depend on the layer. + init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None) + init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None) + init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None) + init_weights(self.config, self.ff_proj1, d=self.config.d_model, layer_id=None) + init_weights(self.config, self.ff_proj2, d=self.config.d_model, layer_id=None) + + def _scaled_dot_product_attention( + self, + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + attn_mask: Optional[torch.Tensor] = None, + drop_mask: Optional[torch.Tensor] = None, + dropout_p: float = 0.0, + response_dropout_p: float = 0.0, + is_causal: bool = False, + ) -> torch.Tensor: + # For GQA + assert k.size(1) == v.size(1) + num_kv_heads = k.size(1) + num_q_heads = q.size(1) + if num_q_heads != num_kv_heads: + assert num_q_heads % num_kv_heads == 0 + k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) + v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads) + + og_dtype = q.dtype + k = k.to(q.device) + v = v.to(q.device) + if attn_mask is not None: + attn_mask = attn_mask.to(q.device) + + assert response_dropout_p == 0.0, "Response dropout is not supported in Llama." + + if self.config.float32_attention: + q, k = q.to(torch.float), k.to(torch.float) + + if self.config.attention_type == "direct": + attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (q.shape[-1] ** 0.5) + + if is_causal: + assert attn_mask is None + + query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None + attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len] + elif attn_mask is not None: + attn_bias = attn_mask + else: + attn_bias = torch.zeros_like(attn_weights) + + attn_weights += attn_bias + + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=dropout_p, training=self.training).to(v.dtype) + + att = torch.matmul(attn_weights, v) + elif self.config.attention_type == "sdpa": + att = F.scaled_dot_product_attention( + q, + k, + v, + attn_mask=attn_mask, + dropout_p=dropout_p, + is_causal=is_causal, + ) + else: + raise NotImplementedError(self.config.attention_type) + att = att.to(og_dtype) + return att + + def forward( + self, + x: torch.Tensor, + attention_bias: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + drop_mask: Optional[torch.Tensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: + # Get query, key, value projections. + # shape: + # - for regular attn q, k, v: (batch_size, seq_len, d_model) + # - for multi-query attn q: (batch_size, seq_len, d_model) + # k, v: (batch_size, seq_len, d_model // n_heads) + x_normed = self.attn_norm(x) + q = self.q_proj(x_normed) + k = self.k_proj(x_normed) + v = self.v_proj(x_normed) + + if self.config.clip_qkv is not None: + q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) + k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) + v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) + + # Get attention scores. + if self._activation_checkpoint_fn is not None: + att, cache = self._activation_checkpoint_fn( # type: ignore + self.attention, q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache + ) + else: + att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache) + + # Add attention scores. + # shape: (B, T, C) + x = x + self.dropout(att, drop_mask=drop_mask) + + # Add feed-forward projection. + # shape: (batch_size, seq_len, d_model) + og_x = x + if self._activation_checkpoint_fn is not None: + x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore + else: + x = self.ff_norm(x) + x1 = self.ff_proj1(x) + x2 = self.ff_proj2(x) + if self._activation_checkpoint_fn is not None: + x = self._activation_checkpoint_fn(self.act, x1, x2) # type: ignore + else: + x = self.act(x1, x2) + x = self.ff_out(x) + x = self.dropout(x, drop_mask=drop_mask) + x = og_x + x + + return x, cache + + +class MolmoSequentialBlock(MolmoBlock): + """ + This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))`` + (plus another skip connection). + """ + + def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache): + super().__init__(layer_id, config, cache) + # Layer norms. + self.attn_norm = LayerNorm.build(config) + self.ff_norm = LayerNorm.build(config) + # Attention input projection. Projects x -> (q, k, v) + + head_dim = config.d_model // config.n_heads + self.fused_dims = ( + config.d_model, + config.effective_n_kv_heads * head_dim, + config.effective_n_kv_heads * head_dim, + ) + self.att_proj = nn.Linear( + config.d_model, sum(self.fused_dims), + bias=config.include_bias or config.qkv_bias, + device=config.init_device + ) + # Feed-forward input projection. + self.ff_proj = nn.Linear( + config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device + ) + + def reset_parameters(self): + super().reset_parameters() + self.attn_norm.reset_parameters() + self.ff_norm.reset_parameters() + # NOTE: the standard deviation for these weights does not depend on the layer. + init_weights( + self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module + ) + init_weights( + self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module + ) + + def forward( + self, + x: torch.Tensor, + attention_bias: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + drop_mask: Optional[torch.Tensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: + # Get query, key, value projections. + # shape: + # - for regular attn q, k, v: (batch_size, seq_len, d_model) + # - for multi-query attn q: (batch_size, seq_len, d_model) + # k, v: (batch_size, seq_len, d_model // n_heads) + # - for group query attn q: (batch_size, seq_len, d_model) + # k, v: (batch_size, seq_len, d_model // n_kv_heads) + + if not self.config.norm_after: + if self._activation_checkpoint_fn is not None: + atten_in = self._activation_checkpoint_fn(self.attn_norm, x) + else: + atten_in = self.attn_norm(x) + else: + atten_in = x + qkv = self.att_proj(atten_in) + + if self.config.clip_qkv is not None: + qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) + + q, k, v = qkv.split(self.fused_dims, dim=-1) + + # Get attention scores. + if self._activation_checkpoint_fn is not None: + att, cache = self._activation_checkpoint_fn( # type: ignore + self.attention, q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache + ) + else: + att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache) + + if self.config.norm_after: + if self._activation_checkpoint_fn is not None: + att = self._activation_checkpoint_fn(self.attn_norm, att) + else: + att = self.attn_norm(att) + + # Add attention scores. + # shape: (B, T, C) + x = x + self.dropout(att, drop_mask=drop_mask) + + # Add feed-forward projection. + # shape: (batch_size, seq_len, d_model) + og_x = x + + if not self.config.norm_after: + if self._activation_checkpoint_fn is not None: + x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore + else: + x = self.ff_norm(x) + + x = self.ff_proj(x) + if self._activation_checkpoint_fn is not None: + x = self._activation_checkpoint_fn(self.act, x) # type: ignore + else: + x = self.act(x) + x = self.ff_out(x) + + if self.config.norm_after: + if self._activation_checkpoint_fn is not None: + x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore + else: + x = self.ff_norm(x) + + x = self.dropout(x, drop_mask=drop_mask) + x = og_x + x + + return x, cache + + +class Embedding(nn.Module): + def __init__( + self, + num_embeddings: int, + num_new_embeddings: int, + features: int, + device: Union[str, torch.device], + initializer_range: float = 0.02, + new_embed_initializer_range: float = 0.02, + ): + super().__init__() + self.initializer_range = initializer_range + self.new_embed_initializer_range = new_embed_initializer_range + self.embedding = nn.Parameter( + torch.zeros(num_embeddings, features, device=device), + ) + self.new_embedding = nn.Parameter( + torch.zeros(num_new_embeddings, features, device=device), + ) + + def reset_parameters(self): + nn.init.normal_(self.embedding, std=self.initializer_range) + nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0)) + + +class Dropout(nn.Dropout): + def __init__( + self, + p: float = 0.5, + inplace: bool = False, + mask_p: float = 0, + broadcast_dims: Sequence[int] = (), + ): + super().__init__(p, inplace) + self.mask_p = mask_p + self.broadcast_dims = broadcast_dims + + def forward(self, input: torch.Tensor, drop_mask: Optional[torch.Tensor] = None) -> torch.Tensor: + """ + :param input: A tensor of shape `(batch_size, seq_len, embed_dim)` + :param drop_mask: A tensor of shape `(batch_size, seq_len)` with values of zero or one. + """ + if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0): + return input + else: + if self.mask_p > 0. and self.training: + assert drop_mask is not None + drop_mask = drop_mask.to(input.dtype) + keep_prob = 1.0 - self.p + keep_prob2 = 1.0 - self.mask_p + keep_prob = drop_mask * keep_prob2 + (1 - drop_mask) * keep_prob + keep_prob = keep_prob.unsqueeze(-1) + dropout_shape = list(input.shape) + keep_prob = keep_prob.broadcast_to(dropout_shape) + multiplier = input.new_empty(dropout_shape).bernoulli_(keep_prob) + multiplier.div_(keep_prob) + return input * multiplier + elif self.p > 0. and len(self.broadcast_dims) > 0 and self.training: + keep_prob = 1.0 - self.p + dropout_shape = list(input.shape) + for dim in self.broadcast_dims: + dropout_shape[dim] = 1 + keep = input.new_empty(dropout_shape).bernoulli_(keep_prob) + multiplier = keep.broadcast_to(input.shape) + multiplier.div_(keep_prob) + input = input * multiplier + else: + return F.dropout(input, self.p, self.training, self.inplace) + + +@dataclass +class VisionBackboneConfig: + image_model_type: str = "openai" + image_default_input_size: Tuple[int, int] = (336, 336) + image_patch_size: int = 14 + image_pos_patch_size: int = 14 + image_emb_dim: int = 1024 + image_num_heads: int = 16 + image_num_key_value_heads: int = 16 + image_num_layers: int = 24 + image_head_dim: int = 64 + image_mlp_dim: int = 4096 + image_mlp_activations: str = "gelu" + image_dropout_rate: float = 0.0 + image_num_pos: int = 577 + image_norm_eps: float = 1e-5 + attention_dropout: float = 0.0 + residual_dropout: float = 0.0 + initializer_range: float = 0.02 + fsdp_wrap: bool = False + resize_mode: str = "default" + + def __post_init__(self): + self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment] + + @property + def image_num_patch(self): + h, w = self.image_default_input_size + return h // self.image_patch_size, w // self.image_patch_size + + +@dataclass +class FullMolmoConfig: + d_model: int = 768 + n_heads: int = 12 + n_kv_heads: Optional[int] = None + qkv_bias: bool = False + clip_qkv: Optional[float] = None + n_layers: int = 12 + mlp_ratio: int = 4 + mlp_hidden_size: Optional[int] = None + activation_type: str = "swiglu" + block_type: str = "sequential" + block_group_size: int = 1 + alibi: bool = False + alibi_bias_max: float = 8.0 + rope: bool = False + rope_full_precision: bool = True + rope_theta: float = 10000. + rope_impl: str = "cockatoo" + vision_backbone: Optional[VisionBackboneConfig] = None + vit_load_path: Optional[str] = None + llm_load_path: Optional[str] = None + attention_type: str = "sdpa" + float32_attention: bool = True + attention_dropout: float = 0.1 + response_attention_dropout: float = 0.0 + multi_query_attention: Optional[bool] = None + attention_layer_norm: bool = False + residual_dropout: float = 0.1 + response_residual_dropout: float = 0.0 + embedding_dropout: float = 0.1 + layer_norm_type: str = "default" + layer_norm_with_affine: bool = True + layer_norm_eps: Optional[float] = None + attention_layer_norm_with_affine: bool = True + max_sequence_length: int = 1024 + max_position_embeddings: Optional[int] = None + include_bias: bool = True + bias_for_layer_norm: Optional[bool] = None + scale_logits: bool = False + vocab_size: int = 50257 + embedding_size: Optional[int] = 50304 + additional_vocab_size: Optional[int] = None + new_embedding_init_range: float = 0.02 + weight_tying: bool = True + pad_token_id: int = -1 + init_device: Optional[str] = None + init_std: float = 0.02 + init_cutoff_factor: Optional[float] = None + norm_after: bool = False + precision: Optional[str] = None + max_crops: int = 12 + crop_mode: str = "patchify-v2-and-resize-c2" + do_random_scale: bool = True + use_col_tokens: bool = True + image_padding_embed: Optional[str] = None + vit_layers: Tuple = (-1,) + image_pooling_h: int = 2 + image_pooling_w: int = 2 + image_pooling_2d: str = "attention" + image_projector: str = "mlp" + image_feature_dropout: float = 0.0 + use_cls_feature: bool = False + initializer_range: float = 0.02 + pad_tokenizer: bool = False + normalize_input_embeds: bool = False + use_position_ids: bool = True + query_pre_attn_scalar: int = 224 + + @property + def effective_n_kv_heads(self) -> int: + if self.n_kv_heads is None: + if self.multi_query_attention is True: + return 1 + else: + return self.n_heads + else: + if self.multi_query_attention is None: + return self.n_kv_heads + if self.multi_query_attention: + n_kv_heads_should_be = 1 + else: + n_kv_heads_should_be = self.n_heads + if self.n_kv_heads == n_kv_heads_should_be: + return n_kv_heads_should_be + else: + raise MolmoConfigurationError( + "You can't set `multi_query_attention` and `n_kv_heads` at the same time." + ) + + @property + def image_num_patch(self): + assert self.vision_backbone is not None + return self.vision_backbone.image_num_patch + + @property + def image_patch_size(self): + assert self.vision_backbone is not None + return self.visoin_backbone.image_patch_size + + def llm_patches_per_crop(self): + h, w = self.image_num_patch + # Round up in case we need to pad the image features for pooling + h = (h + self.image_pooling_h - 1) // self.image_pooling_h + w = (w + self.image_pooling_w - 1) // self.image_pooling_w + return h, w + + +def _expand_token(token, batch_size: int): + return token.view(1, 1, -1).expand(batch_size, -1, -1) + + +class LayerNormFp32(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back). + Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py. + """ + + def forward(self, x: torch.Tensor) -> torch.Tensor: + orig_type = x.dtype + x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) + return x.to(orig_type) + + +class ViTMLP(nn.Module): + def __init__(self, config: FullMolmoConfig): + super().__init__() + self.config = config + v_cfg = config.vision_backbone + + self.w1 = nn.Linear( + v_cfg.image_emb_dim, + v_cfg.image_mlp_dim, + bias=True, + device=config.init_device, + ) + # Activation function. + cfg = deepcopy(config) + cfg.activation_type = v_cfg.image_mlp_activations + self.act = Activation.build(cfg) + self.w2 = nn.Linear( + v_cfg.image_mlp_dim, + v_cfg.image_emb_dim, + bias=True, + device=config.init_device, + ) + + def reset_parameters(self): + v_cfg = self.config.vision_backbone + nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0) + nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0) + nn.init.zeros_(self.w1.bias) + nn.init.zeros_(self.w2.bias) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.w1(x) + x = self.act(x) + x = self.w2(x) + return x + + + +class ResidualAttentionBlock(nn.Module): + + def __init__(self, config: FullMolmoConfig): + super().__init__() + self.config = config + + v_cfg = config.vision_backbone + self.attention = MultiHeadDotProductAttention(config) + self.feed_forward = ViTMLP(config) + self.attention_norm = nn.LayerNorm( + v_cfg.image_emb_dim, + eps=v_cfg.image_norm_eps, + device=config.init_device, + ) + self.ffn_norm = nn.LayerNorm( + v_cfg.image_emb_dim, + eps=v_cfg.image_norm_eps, + device=config.init_device, + ) + + def reset_parameters(self): + self.attention.reset_parameters() + self.feed_forward.reset_parameters() + self.attention_norm.reset_parameters() + self.ffn_norm.reset_parameters() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + self.attention(self.attention_norm(x)) + x = x + self.feed_forward(self.ffn_norm(x)) + return x + + +class BlockCollection(nn.Module): + + def __init__(self, config: FullMolmoConfig): + super().__init__() + self.config = config + self.grad_checkpointing: bool = False + + v_cfg = config.vision_backbone + self.resblocks = nn.ModuleList([ + ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers) + ]) + + def reset_parameters(self): + for r in self.resblocks: + r.reset_parameters() + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + hidden_states = [] + for r in self.resblocks: + x = r(x) + hidden_states.append(x) + return hidden_states + + +class VisionTransformer(nn.Module): + + def __init__(self, config: FullMolmoConfig): + super().__init__() + self.config = config + + v_cfg = config.vision_backbone + # class embeddings and positional embeddings + self.scale = v_cfg.image_emb_dim ** -0.5 + self.class_embedding = nn.Parameter( + torch.zeros(v_cfg.image_emb_dim, device=config.init_device), + ) + self.num_prefix_tokens: int = 1 + self.positional_embedding = nn.Parameter( + torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device), + ) + + image_patch_size = v_cfg.image_patch_size + self.patch_embedding = nn.Linear( + image_patch_size * image_patch_size * 3, + v_cfg.image_emb_dim, + bias=False, + device=config.init_device, + ) + + self.pre_ln = LayerNormFp32( + v_cfg.image_emb_dim, + eps=v_cfg.image_norm_eps, + device=config.init_device, + ) + + self.transformer = BlockCollection(config) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.grad_checkpointing = enable + + def reset_parameters(self): + nn.init.normal_(self.class_embedding, std=self.scale) + nn.init.normal_(self.positional_embedding, std=self.scale) + nn.init.normal_(self.patch_embedding.weight, std=0.02) + self.pre_ln.reset_parameters() + self.transformer.reset_parameters() + + def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor: + cls_emb = self.positional_embedding[0:1] + pos_emb = self.positional_embedding[1:] + + pos_emb = pos_emb.reshape( + (int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]) + ) + + (patch_num_0, patch_num_1) = patch_num + + if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: + # Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py + # antialias: default True in jax.image.resize + pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2) + pos_emb = F.interpolate( + pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True, + ) + pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0) + + pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1]) + x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype) + return x + + def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]: + """ + : param x: (batch_size, num_patch, n_pixels) + """ + if patch_num is None: + patch_num = self.config.vision_backbone.image_num_patch + B, N, D = x.shape + + x = self.patch_embedding(x) + + # class embeddings and positional embeddings + x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) + x = self.add_pos_emb(x, patch_num) + + x = self.pre_ln(x) + + hidden_states = self.transformer(x) + return hidden_states + + +class MultiHeadDotProductAttention(nn.Module): + def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True): + super().__init__() + self.config = config + self.use_bias = use_bias + + v_cfg = config.vision_backbone + self.embed_dim = v_cfg.image_emb_dim + self.num_heads = v_cfg.image_num_heads + self.head_dim = v_cfg.image_head_dim + self.num_key_value_heads = v_cfg.image_num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.initializer_range = v_cfg.initializer_range + self.is_vit_layer = is_vit_layer + + nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers) + + self.wq = nn.Linear( + nlayers * self.embed_dim, + self.num_heads * self.head_dim, + bias=use_bias, + device=config.init_device, + ) + self.wk = nn.Linear( + nlayers * self.embed_dim, + self.num_key_value_heads * self.head_dim, + bias=use_bias, + device=config.init_device, + ) + self.wv = nn.Linear( + nlayers * self.embed_dim, + self.num_key_value_heads * self.head_dim, + bias=use_bias, + device=config.init_device, + ) + self.wo = nn.Linear( + self.num_heads * self.head_dim, + self.embed_dim, + bias=use_bias, + device=config.init_device, + ) + self.attention_dropout: Optional[Dropout] = None + if v_cfg.attention_dropout > 0: + self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1)) + self.residual_dropout = Dropout(v_cfg.residual_dropout) + + def reset_parameters(self): + nn.init.normal_(self.wq.weight, std=self.initializer_range) + nn.init.normal_(self.wk.weight, std=self.initializer_range) + nn.init.normal_(self.wv.weight, std=self.initializer_range) + nn.init.normal_(self.wo.weight, std=self.initializer_range) + if self.use_bias: + nn.init.constant_(self.wq.bias, 0) + nn.init.constant_(self.wk.bias, 0) + nn.init.constant_(self.wv.bias, 0) + nn.init.constant_(self.wo.bias, 0) + + def _split_heads(self, hidden_states, num_heads) -> torch.Tensor: + return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states) -> torch.Tensor: + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor: + + if inputs_kv is not None: + inputs_k = inputs_kv + inputs_v = inputs_kv + else: + inputs_k = inputs_q + inputs_v = inputs_q + + xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v) + + xq = self._split_heads(xq, self.num_heads) + xk = self._split_heads(xk, self.num_key_value_heads) + xv = self._split_heads(xv, self.num_key_value_heads) + + if self.num_heads != self.num_key_value_heads: + xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) + xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) + + og_dtype = xq.dtype + + if self.config.float32_attention: + xq = xq.to(torch.float) + xk = xk.to(torch.float) + + if self.config.attention_type == "direct": + attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk) + attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype) + if self.attention_dropout is not None: + attn_weights = self.attention_dropout(attn_weights) + attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv) + + elif self.config.attention_type == "sdpa": + attn_output = F.scaled_dot_product_attention( + xq.transpose(1, 2).contiguous(), + xk.transpose(1, 2).contiguous(), + xv.transpose(1, 2).contiguous(), + is_causal=False, + dropout_p=self.config.vision_backbone.attention_dropout + ).transpose(1, 2) + else: + raise NotImplementedError(self.config.attention_type) + attn_output = attn_output.to(og_dtype) + attn_output = self._merge_heads(attn_output) + attn_output = self.wo(attn_output) + attn_output = self.residual_dropout(attn_output) + + return attn_output + + +class MultiHeadAttentionPool(nn.Module): + def __init__( + self, + config: FullMolmoConfig, + factor: int = 1, + use_bias: bool = True, + dropout: bool = True, + output_layer: bool = True, + mean_residual: bool = False, + query: str = "mean", + is_vit_layer: Optional[bool] = True + ): + super().__init__() + self.config = config + self.factor = factor + self.use_bias = use_bias + self.dropout = dropout + self.output_layer = output_layer + self.mean_residual = mean_residual + self.query = query + + v_cfg = config.vision_backbone + input_dim = v_cfg.image_emb_dim + self.embed_dim = v_cfg.image_emb_dim * factor + self.num_heads = v_cfg.image_num_heads + self.head_dim = v_cfg.image_head_dim * factor + self.num_key_value_heads = v_cfg.image_num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.initializer_range = v_cfg.initializer_range + + nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers) + + if query != "vector": + self.wq = nn.Linear( + nlayers * input_dim, + self.num_heads * self.head_dim, + bias=use_bias, + device=config.init_device, + ) + self.wk = nn.Linear( + nlayers * input_dim, + self.num_key_value_heads * self.head_dim, + bias=use_bias, + device=config.init_device, + ) + self.wv = nn.Linear( + nlayers * input_dim, + self.num_key_value_heads * self.head_dim, + bias=use_bias, + device=config.init_device, + ) + + if query == "vector": + self.attention_query = nn.Parameter( + torch.zeros( + 1, self.num_key_value_heads * self.head_dim, device=config.init_device, + ), + ) + + if output_layer: + self.wo = nn.Linear( + self.num_heads * self.head_dim, + self.embed_dim, + bias=use_bias, + device=config.init_device, + ) + self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1)) + if dropout: + self.residual_dropout = Dropout(v_cfg.residual_dropout) + + def reset_parameters(self): + if self.query != "vector": + nn.init.normal_(self.wq.weight, std=self.initializer_range) + nn.init.normal_(self.wk.weight, std=self.initializer_range) + nn.init.normal_(self.wv.weight, std=self.initializer_range) + if self.output_layer: + nn.init.normal_(self.wo.weight, std=self.initializer_range) + if self.use_bias: + if self.query != "vector": + nn.init.constant_(self.wq.bias, 0) + nn.init.constant_(self.wk.bias, 0) + nn.init.constant_(self.wv.bias, 0) + if self.output_layer: + nn.init.constant_(self.wo.bias, 0) + if self.query == "vector": + nn.init.normal_(self.attention_query, std=self.initializer_range) + + def _split_heads(self, hidden_states, num_heads): + return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor: + + xk, xv = self.wk(inputs_kv), self.wv(inputs_kv) + + if self.query == "mean": + inputs_q = inputs_kv.mean(dim=1, keepdim=True) + xq = self.wq(inputs_q) + elif self.query == "first": + inputs_q = inputs_kv[:, :1] + xq = self.wq(inputs_q) + elif self.query == "vector": + xq = self.attention_query.expand(inputs_kv.size(0), -1, -1) + elif self.query == "constant": + inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1]) + xq = self.wq(inputs_q) + else: + raise ValueError(f"Unknown query type: {self.query}") + + xq = self._split_heads(xq, self.num_heads) + xk = self._split_heads(xk, self.num_key_value_heads) + xv = self._split_heads(xv, self.num_key_value_heads) + + if self.num_heads != self.num_key_value_heads: + xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) + xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) + + xq = xq.to(torch.float) + xk = xk.to(torch.float) + + xq = xq / math.sqrt(xq.size(-1)) + attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk) + + attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype) + + attn_weights = self.attention_dropout(attn_weights).to(xv.dtype) + + attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv) + attn_output = self._merge_heads(attn_output) + if self.output_layer: + attn_output = self.wo(attn_output) + if self.dropout: + attn_output = self.residual_dropout(attn_output) + if self.mean_residual: + attn_output += inputs_kv.mean(dim=1, keepdim=True) + + return attn_output + + +class MLP(nn.Module): + def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0): + super().__init__() + self.config = config + self.hidden_size = ( + config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model + ) + self.initializer_range = config.initializer_range + + self.w1 = nn.Linear( + input_dim, + self.hidden_size // 2, + bias=False, + device=config.init_device, + ) + self.w2 = nn.Linear( + self.hidden_size // 2, + config.d_model, + bias=False, + device=config.init_device, + ) + self.w3 = nn.Linear( + input_dim, + self.hidden_size // 2, + bias=False, + device=config.init_device, + ) + # Activation function. + self.act = Activation.build(config) + self.dropout = Dropout(dropout) + + def reset_parameters(self): + nn.init.normal_(self.w1.weight, std=self.initializer_range) + nn.init.normal_(self.w2.weight, std=self.initializer_range) + nn.init.normal_(self.w3.weight, std=self.initializer_range) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.w2(self.act(self.w1(x), self.w3(x))) + x = self.dropout(x) + return x + + +class Residual(nn.Module): + def __init__(self, submodule: nn.Module): + super().__init__() + self.submodule = submodule + + def reset_parameters(self): + self.submodule.reset_parameters() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x + self.submodule(x) + + +class OLMoVisionBackbone(nn.Module): + def __init__(self, config: FullMolmoConfig): + super().__init__() + self.config = config + self.image_vit = VisionTransformer(config) + + input_dim: int = None + self.image_pooling_2d: nn.Module = None + if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}: + self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False) + input_dim = config.vision_backbone.image_emb_dim + elif config.image_pooling_2d == ImagePooling2DType.attention_2wide: + cfg = deepcopy(config) + cfg.vision_backbone.image_emb_dim *= 2 + cfg.vision_backbone.image_head_dim *= 2 + self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False) + input_dim = cfg.vision_backbone.image_emb_dim + elif config.image_pooling_2d == ImagePooling2DType.attention_v2: + assert config.vit_layers is not None + use_bias = True + dropout = True + output_layer = True + query = "mean" + mean_residual = False + factor = len(config.vit_layers) + self.image_pooling_2d = MultiHeadAttentionPool( + config, + factor=factor, + use_bias=use_bias, + dropout=dropout, + output_layer=output_layer, + mean_residual=mean_residual, + query=query, + is_vit_layer=False, + ) + input_dim = config.vision_backbone.image_emb_dim * factor + elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]: + self.image_pooling_2d = None + nlayers = 1 if config.vit_layers is None else len(config.vit_layers) + input_dim = nlayers * config.vision_backbone.image_emb_dim + else: + raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}") + + self.input_dim = input_dim + + # `MLP` assume the activation takes two inputs, so it must be a 'llama' version + if config.activation_type == ActivationType.swiglu: + mlp_config = replace(config, activation_type=ActivationType.llama_swiglu) + elif config.activation_type == ActivationType.gelu: + mlp_config = replace(config, activation_type=ActivationType.llama_geglu) + else: + mlp_config = config + if config.image_projector == ImageProjectType.mlpx2: + self.image_projector = nn.ModuleList( + [MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))] + ) + elif config.image_projector == ImageProjectType.mlp: + self.image_projector = MLP(mlp_config, input_dim) + elif config.image_projector == ImageProjectType.linear: + self.image_projector = nn.Linear( + input_dim, + config.d_model, + bias=False, + device=config.init_device, + ) + else: + raise NotImplementedError(f"Unknown image projector: {config.image_projector}") + + self.image_feature_dropout = Dropout(config.image_feature_dropout) + + def reset_parameters(self): + if self.image_pooling_2d is not None: + self.image_pooling_2d.reset_parameters() + if self.config.image_projector == "2mlp": + for module in self.image_projector: + module.reset_parameters() + elif self.config.image_projector == "linear": + nn.init.xavier_uniform_(self.image_projector.weight) + else: + self.image_projector.reset_parameters() + + def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + raise NotImplementedError + + +class OLMoPretrainedVisionBackbone(OLMoVisionBackbone): + def __init__(self, config: FullMolmoConfig): + super().__init__(config) + v_cfg = self.config.vision_backbone + self.grad_checkpointing = False + + self.num_prefix_tokens = self.image_vit.num_prefix_tokens + assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported" + if config.use_cls_feature: + assert self.num_prefix_tokens > 0, "The model does not have a CLS token" + nlayers = 1 if config.vit_layers is None else len(config.vit_layers) + self.cls_projector = nn.Linear( + nlayers * v_cfg.image_emb_dim, + self.input_dim, + bias=False, + device=config.init_device, + ) + + self.pad_embed = None + if config.image_padding_embed: + image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers) + if config.image_padding_embed in ["pad_embed", "regress"]: + self.pad_embed = nn.Parameter( + torch.zeros((image_dim,), device=config.init_device)) + elif config.image_padding_embed == "pad_and_partial_pad": + self.pad_embed = nn.Parameter( + torch.zeros((2, image_dim), device=config.init_device)) + else: + raise ValueError(config.image_padding_embed) + + def reset_parameters(self): + super().reset_parameters() + self.image_vit.reset_parameters() + if self.config.use_cls_feature: + nn.init.xavier_uniform_(self.cls_projector.weight) + + def encode_image(self, images: torch.Tensor) -> torch.Tensor: + """ + : param images: (batch_size, num_crops, num_patch, n_pixels) + """ + cfg = self.config + v_cfg = self.config.vision_backbone + B, T, N, D = images.shape + + mask = torch.all(images.view(B * T, N, D) != -1, dim=(1, 2), keepdim=True) + + # Output all hidden states + # n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim) + images = images.view(B * T, N, D) + image_features = self.image_vit(images) + + if cfg.vit_layers is not None: + features = [] + for layer in cfg.vit_layers: + features.append(image_features[layer]) + image_features = torch.cat(features, dim=-1) + else: + image_features = image_features[-1] + + cls_embed: torch.Tensor = None + if self.num_prefix_tokens > 0: + cls_embed = image_features[:, 0] + image_features = image_features[:, 1:] + + image_features = image_features * mask + image_features = image_features.view(B, T, N, -1) + + cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None + + return image_features, cls_embed + + def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + cfg = self.config + + # image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim) + batch_size, num_image = images.shape[:2] + image_features, cls_embed = self.encode_image(images) + + if cfg.image_padding_embed: + assert image_masks is not None + if cfg.image_padding_embed == "pad_embed": + all_pad = (image_masks == 0).to(dtype=torch.float32) + pad_embed = self.pad_embed[None, None, None, :] + image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1) + elif cfg.image_padding_embed == "regress": + pad_embed = self.pad_embed[None, None, None, :] + image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1) + elif cfg.image_padding_embed == "pad_and_partial_pad": + pad_embed = self.pad_embed[:, None, None, None, :] + all_pad = image_masks == 0 + partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=torch.float32) + all_pad = all_pad.to(dtype=torch.float32) + image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1) + image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1) + else: + raise ValueError(cfg.image_padding_embed) + + image_features = self.image_feature_dropout(image_features) + if cls_embed is not None: + cls_embed = self.image_feature_dropout(cls_embed) + + image_features = image_features.reshape( + (batch_size, num_image) + cfg.image_num_patch + (-1,), + ) + + if cfg.image_num_patch[0] % cfg.image_pooling_h == 1: + # Pad so we can still pool 2x2 patches + image_features = F.pad( + image_features, + (0, 0, 0, 1, 0, 1, 0, 0, 0, 0), + ) + + # image pooling + image_features = einops.rearrange( + image_features, + 'b n (h dh) (w dw) c -> (b n h w) (dh dw) c', + dh=cfg.image_pooling_h, + dw=cfg.image_pooling_w, + ) + + if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq: + query = image_features.mean(-2, keepdim=True) + image_features = self.image_pooling_2d(query, image_features) + elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}: + if self.grad_checkpointing: + from torch.utils.checkpoint import checkpoint + image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False) + else: + image_features = self.image_pooling_2d(image_features[:, :1, :], image_features) + + h, w = cfg.llm_patches_per_crop() + image_features = image_features.reshape(batch_size, num_image, h * w, -1) + + # MLP layer to map the feature. + if self.grad_checkpointing: + from torch.utils.checkpoint import checkpoint + image_features = checkpoint(self.image_projector, image_features, use_reentrant=False) + else: + image_features = self.image_projector(image_features) + + if self.config.use_cls_feature: + raise NotImplementedError() + + # image_features: (batch_size, num_image, num_patch, d_model) + # cls_embed: (batch_size, num_image, d_model) + return image_features, cls_embed + + +class ModuleType(str, Enum): + in_module = "in" + out_module = "out" + emb = "emb" + final_out = "final_out" + + +def init_weights( + config: FullMolmoConfig, + module: Union[nn.Linear, nn.Embedding], + d: Optional[int] = None, + layer_id: Optional[int] = None, + std_factor: float = 1.0, + type_of_module: Optional[ModuleType] = None, +) -> None: + d = d if d is not None else config.d_model + std = config.init_std * std_factor + if config.init_cutoff_factor is not None: + cutoff_value = config.init_cutoff_factor * std + nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value) + else: + nn.init.normal_(module.weight, mean=0.0, std=std) + + +class LlamaSwiGLU(nn.Module): + def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor: + return F.silu(x1) * x2 + + @property + def output_multiplier(self) -> float: + return 0.5 + + +class SwiGLU(nn.Module): + def forward(self, x: torch.Tensor) -> torch.Tensor: + x, gate = x.chunk(2, dim=-1) + return F.silu(gate) * x + + @property + def output_multiplier(self) -> float: + return 0.5 + + +class Activation(nn.Module): + def __init__(self, config: FullMolmoConfig): + super().__init__() + self.config = config + + def forward(self, x: torch.Tensor) -> torch.Tensor: + raise NotImplementedError + + @property + def output_multiplier(self) -> float: + raise NotImplementedError + + @classmethod + def build(cls, config: FullMolmoConfig) -> 'Activation': + if config.activation_type == "quick_gelu": + return QuickGELU(config) + elif config.activation_type == "gelu": + return cast(Activation, GELU(approximate="none")) + elif config.activation_type == "gelu_tanh": + return cast(Activation, GELU(approximate="tanh")) + elif config.activation_type == "relu": + return cast(Activation, ReLU(inplace=False)) + elif config.activation_type == "silu": + return cast(Activation, SiLU(inplace=False)) + # elif config.activation_type == "llama_geglu": + # return LlamaGEGLU(config) + # elif config.activation_type == "llama_geglu_tanh": + # return LlamaGEGLUTanh(config) + elif config.activation_type == "llama_swiglu": + return LlamaSwiGLU() + elif config.activation_type == "swiglu": + return SwiGLU() + else: + raise NotImplementedError(f"Unknown activation: '{config.activation_type}'") + + +class QuickGELU(Activation): + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x * torch.sigmoid(1.702 * x) + + @property + def output_multiplier(self) -> float: + return 1.0 + + +class GELU(nn.GELU): + @property + def output_multiplier(self) -> float: + return 1.0 + + +class ReLU(nn.ReLU): + @property + def output_multiplier(self) -> float: + return 1.0 + + +class SiLU(nn.SiLU): + @property + def output_multiplier(self) -> float: + return 1.0 + + +def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor: + att_bias = torch.triu( + torch.ones(seq_len, seq_len, device=device, dtype=torch.float), + diagonal=1, + ) + att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min) + return att_bias.view(1, 1, seq_len, seq_len) # type: ignore + + +def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor: + if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len: + if causal_bias.device != device: + causal_bias = causal_bias.to(device) + cache["causal_attention_bias"] = causal_bias + return causal_bias + with torch.autocast(device.type, enabled=False): + causal_bias = causal_attention_bias(seq_len, device) + cache["causal_attention_bias"] = causal_bias + return causal_bias + + +class LayerNormBase(nn.Module): + def __init__( + self, + config: MolmoConfig, + *, + size: Optional[int] = None, + elementwise_affine: Optional[bool] = True, + eps: float = 1e-05, + weight_initializer: Optional[Callable] = torch.ones, + bias_initializer: Optional[Callable] = torch.zeros, + ): + super().__init__() + self.config = config + self.eps = self.config.layer_norm_eps or eps + self.normalized_shape = (size or config.d_model,) + if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine): + self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device)) + use_bias = self.config.bias_for_layer_norm + if use_bias is None: + use_bias = self.config.include_bias + if use_bias: + self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device)) + else: + self.register_parameter("bias", None) + else: + self.register_parameter("bias", None) + self.register_parameter("weight", None) + + @classmethod + def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs): + if config.layer_norm_type == "default": + return LayerNorm(config, size=size, low_precision=False, **kwargs) + elif config.layer_norm_type == "low_precision": + return LayerNorm(config, size=size, low_precision=True, **kwargs) + elif config.layer_norm_type == "rms": + return RMSLayerNorm(config, size=size, **kwargs) + else: + raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'") + + +class RMSLayerNorm(LayerNormBase): + """ + RMS layer norm, a simplified :class:`LayerNorm` implementation + """ + + def __init__( + self, + config: FullMolmoConfig, + size: Optional[int] = None, + elementwise_affine: Optional[bool] = None, + eps: float = 1e-5, + ): + super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + with torch.autocast(enabled=False, device_type=x.device.type): + og_dtype = x.dtype + x = x.to(torch.float32) + variance = x.pow(2).mean(-1, keepdim=True) + x = x * torch.rsqrt(variance + self.eps) + x = x.to(og_dtype) + + if self.weight is not None: + if self.bias is not None: + return self.weight * x + self.bias + else: + return self.weight * x + else: + return x + + +class LayerNorm(LayerNormBase): + """ + The default :class:`LayerNorm` implementation which can optionally run in low precision. + """ + + def __init__( + self, + config: FullMolmoConfig, + size: Optional[int] = None, + low_precision: bool = False, + elementwise_affine: Optional[bool] = None, + eps: float = 1e-05, + ): + super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps) + self.low_precision = low_precision + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.low_precision: + module_device = x.device + downcast_x = self._cast_if_autocast_enabled(x) + downcast_weight = ( + self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight + ) + downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias + with torch.autocast(enabled=False, device_type=module_device.type): + return F.layer_norm( + downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps + ) + else: + return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps) + + +class Molmo(nn.Module): + def __init__(self, config: FullMolmoConfig, init_params: bool = True): + super().__init__() + self.config = config + self.__cache = BufferCache() + + # Validate config. + if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size: + if self.config.embedding_size < self.config.vocab_size: + raise MolmoConfigurationError("embedding size should be at least as big as vocab size") + elif self.config.embedding_size % 128 != 0: + import warnings + + warnings.warn( + "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning + ) + torch.backends.cuda.enable_flash_sdp(True) + torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it + + wte = None + if self.config.additional_vocab_size is not None: + wte = Embedding( + config.embedding_size or config.vocab_size, + config.additional_vocab_size, + config.d_model, + device=config.init_device, + initializer_range=config.initializer_range, + new_embed_initializer_range=config.new_embedding_init_range + ) + else: + wte=nn.Embedding( + config.embedding_size or config.vocab_size, config.d_model, device=config.init_device + ) + + self.transformer = nn.ModuleDict( + dict( + wte=wte, + emb_drop=Dropout(config.embedding_dropout), + ln_f=LayerNorm.build(config), + ) + ) + + blocks = [MolmoBlock.build(i, config, self.__cache) for i in range(config.n_layers)] + if self.config.block_group_size > 1: + raise NotImplementedError() + else: + self.transformer.update({"blocks": nn.ModuleList(blocks)}) + + if not (self.config.alibi or self.config.rope): + self.transformer.update( + {"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)} + ) + if not config.weight_tying: + self.transformer.update( + { + "ff_out": nn.Linear( + config.d_model, + config.embedding_size or config.vocab_size, + bias=config.include_bias, + device=config.init_device, + ) + } + ) + + self.vision_backbone: Optional[OLMoVisionBackbone] = None + if config.vision_backbone is not None: + self.vision_backbone = OLMoPretrainedVisionBackbone(config) + + self.__num_fwd_flops: Optional[int] = None + + def reset_parameters(self): + if self.vision_backbone is not None: + self.vision_backbone.reset_parameters() + self.reset_non_vision_parameters() + + def reset_non_vision_parameters(self): + self.transformer.wte.reset_parameters() + if hasattr(self.transformer.wte, "new_embedding"): + nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range) + + if hasattr(self.transformer, "wpe"): + nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0) + + self.transformer.ln_f.reset_parameters() # type: ignore + + if hasattr(self.transformer, "ff_out"): + nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02) + + if self.config.block_group_size == 1: + for block in self.transformer.blocks: + block.reset_parameters() + else: + for block_group in self.transformer.block_groups: + block_group.reset_parameters() + + def forward( + self, + input_ids: torch.LongTensor, + input_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + attention_bias: Optional[torch.Tensor] = None, + response_mask: Optional[torch.Tensor] = None, + images: Optional[torch.Tensor] = None, + image_masks: Optional[torch.Tensor] = None, + image_input_idx: Optional[torch.Tensor] = None, + subsegment_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None, + use_cache: bool = False, + last_logits_only: bool = False, + output_hidden_states: Optional[bool] = None, + append_last_valid_logits: Optional[torch.Tensor] = None, + ) -> ModelOutput: + """ + :param input_ids: A tensor of shape `(batch_size, seq_len)`. + :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input + embeddings. When provided, it is treated as the output of the input embedding layer. + :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates + which input IDs are masked. A `1` value in the mask means that + the corresponding input ID should *not* be ignored. A `0` means + that the corresponding input ID is masked. + + This has the same meaning as the `attention_mask` in HuggingFace's `transformers` + library. + :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`, + `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used + to introduce causal or other biases. + + If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]` + indicates that the i-th element in the sequence is allowed to attend to the j-th + element in the sequence. + + If the tensor is a float tensor, it will just be added to the attention + scores before the softmax. + + The default is causal, which corresponds to a lower-diagonal byte matrix of ones. + :param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates + the response mask. A `1` value in the mask means that the corresponding token + is a response token. A `0` means that the corresponding token is not + a response token. + :param past_key_values: Pre-computed keys and values for each attention block. + Can be used to speed up sequential decoding. The `input_ids` which have + their past given to this model should not be passed as `input_ids` as they have already been computed. + :param use_cache: If `True`, return key and value tensors for each block. + :param last_logits_only: If `True`, only compute the logits for the last token of each sequence. + This can speed up decoding when you only care about the next token. + """ + output_hidden_states = output_hidden_states if output_hidden_states is not None else False + + if past_key_values: + assert len(past_key_values) == self.config.n_layers + + has_image = images is not None + + assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings." + assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images." + + batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2] + if past_key_values is None: + past_length = 0 + else: + past_length = past_key_values[0][0].size(-2) + + if self.config.use_position_ids and attention_mask is None: + attention_mask = input_ids != -1 + + if subsegment_ids is not None: + assert not use_cache, "Subsegment_ids cannot be used with cache." + subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1) + attention_mask = ( + subsegment_mask.to(attention_mask.dtype) * + attention_mask.unsqueeze(2) * + attention_mask.unsqueeze(1)) + if position_ids is None: + raise ValueError(f"Positioned ids must be given if using subsegment_ids") + else: + if self.config.use_position_ids and position_ids is None: + position_ids = torch.clamp( + torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, + min=0, + ).broadcast_to((batch_size, attention_mask.shape[-1])) + + # Get embeddings of input. + # shape: (batch_size, seq_len, d_model) + if input_ids is not None: + input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) + x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore + + num_image: Optional[int] = None + if images is not None: + # shape: (batch_size, num_image, num_patch, d_model) + # cls_embed: (batch_size, num_image, d_model) + image_features, cls_embed = self.vision_backbone(images, image_masks) + num_image, num_patch = image_features.shape[1:3] + assert image_input_idx.shape == (batch_size, num_image, num_patch) + + # inster the image feature into the embedding. + image_features = image_features.view(batch_size, num_image * num_patch, -1) + image_input_idx = image_input_idx.view(batch_size, num_image * num_patch) + + valid = image_input_idx >= 0 + batch_idx = torch.arange(batch_size, device=x.device) + batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]]) + + # For hf demo/endpoint + image_features = image_features.to(x.device) + + x[batch_idx[valid], image_input_idx[valid]] += image_features[valid] + + if self.config.use_cls_feature: + x = torch.cat([x[:, :1], cls_embed, x[:, 1:-num_image]], dim=1) + + valid_images = torch.any( + (image_input_idx >= 0).view(batch_size, num_image, num_patch), dim=-1 + ) + valid_images = valid_images.to(attention_mask.dtype) + attention_mask = torch.cat( + [attention_mask[:, :1], valid_images, attention_mask[:, 1:-num_image]], + dim=1, + ) + position_ids = torch.clamp( + torch.cumsum(attention_mask, dim=-1) - 1, + min=0, + ).broadcast_to((batch_size, attention_mask.shape[-1])) + + if not (self.config.alibi or self.config.rope): + # Get positional embeddings. + # shape: (1, seq_len) + pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0) + # shape: (1, seq_len, d_model) + pos_emb = self.transformer.wpe(pos) # type: ignore + x = pos_emb + x + + # Add input + positional embeddings and apply dropout. + # shape: (batch_size, seq_len, d_model) + x = self.transformer.emb_drop(x) # type: ignore + + # normalized + if self.config.normalize_input_embeds: + x = x * (self.config.d_model ** 0.5) + + # Transform the attention mask into what the blocks expect. + if attention_mask is not None: + # shape: (batch_size, 1, 1, seq_len) + if len(attention_mask.shape) == 2: + attention_mask = attention_mask[:, :past_length + seq_len] + attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :] + else: + attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float) + attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min + + # Merge attention mask with attention bias. + if ( + attention_bias is not None + or attention_mask is not None + or self.config.alibi + # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly + # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute + # scores correctly. + or past_key_values is not None + ): + if attention_bias is None and self.config.alibi: + attention_bias = get_causal_attention_bias( + self.__cache, past_length + seq_len, x.device + ) + self.get_alibi_attention_bias(past_length + seq_len, x.device) + elif attention_bias is None: + attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device) + elif attention_bias.dtype in (torch.int8, torch.bool): + attention_bias = attention_bias.to(dtype=torch.float) + attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min) + + # Transform to the right shape and data type. + mask_len = seq_len + if attention_mask is not None: + mask_len = attention_mask.shape[-1] + elif past_key_values is not None: + mask_len = past_key_values[0][0].shape[-2] + seq_len + attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float) + + # Add in the masking bias. + if attention_mask is not None: + attention_bias = attention_bias + attention_mask + # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf. + # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead + # it can produce NaNs. + ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False) + + attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None + + # decoder layers + all_hidden_states = [] + + # Apply blocks one-by-one. + if self.config.block_group_size == 1: + for block_idx, block in enumerate(self.transformer.blocks): + if output_hidden_states: + # add hidden states + all_hidden_states.append(x) + + layer_past = None if past_key_values is None else past_key_values[block_idx] + x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layer_past=layer_past, use_cache=use_cache) + + if attn_key_values is not None: + assert cache is not None + attn_key_values.append(cache) + else: + for group_idx, block_group in enumerate(self.transformer.block_groups): + if output_hidden_states: + # add hidden states + all_hidden_states.append(x) + + layers_past = ( + None + if past_key_values is None + else past_key_values[ + group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size + ] + ) + x, cache = block_group( + x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layers_past=layers_past, use_cache=use_cache + ) + if attn_key_values is not None: + assert cache is not None + attn_key_values.extend(cache) + + if images is not None and self.config.use_cls_feature: + assert num_image is not None + x = torch.cat( + [x[:, :1], x[:, num_image+1:], torch.zeros_like(x[:, :num_image])], + dim=1, + ) + + if last_logits_only: + # shape: (batch_size, 1, d_model) + if append_last_valid_logits is not None: + last_valid_output = x[ + torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)] + x = last_valid_output.unsqueeze(1) + else: + x = x[:, -1, :].unsqueeze(1) + + # Apply final layer norm. + # shape: (batch_size, seq_len or 1, d_model) + x = self.transformer.ln_f(x) # type: ignore + if output_hidden_states: + # add final hidden state post-final-layernorm, following HuggingFace's convention + all_hidden_states.append(x) + + # Get logits. + # shape: (batch_size, seq_len or 1, vocab_size) + if self.config.weight_tying: + logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore + else: + logits = self.transformer.ff_out(x) # type: ignore + if self.config.scale_logits: + logits.mul_(1 / math.sqrt(self.config.d_model)) + + if not last_logits_only and append_last_valid_logits is not None: + last_valid_logit = logits[ + torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits] + logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1) + + return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type] + + +class MolmoForCausalLM(PreTrainedModel): + config_class = MolmoConfig + base_model_prefix = "model" + _no_split_modules = ["MolmoBlock"] + + def __init__(self, config: MolmoConfig, model: Optional[Molmo] = None, init_params: bool = False): + super().__init__(config) + + if not model: + full_config = FullMolmoConfig( + attention_layer_norm=config.attention_layer_norm, + image_padding_embed="pad_and_partial_pad", + image_pooling_2d="attention-meanq", + rope_impl="llama", + vocab_size=config.vocab_size, + max_sequence_length=config.max_position_embeddings, + qkv_bias=config.qkv_bias, + norm_after=config.norm_after, + embedding_size=config.embedding_size, + attention_type="sdpa", + embedding_dropout=0, + response_residual_dropout=0, + attention_dropout=0, + residual_dropout=0, + rope=True, + weight_tying=False, + include_bias=False, + d_model=config.hidden_size, + mlp_hidden_size=config.intermediate_size, + n_layers=config.num_hidden_layers, + additional_vocab_size=128, + n_heads=config.num_attention_heads, + n_kv_heads=config.num_key_value_heads, + rope_theta=config.rope_theta, + layer_norm_eps=config.layer_norm_eps, + layer_norm_type=config.layer_norm_type, + pad_tokenizer=True, + vit_layers=[-2, -9], + vision_backbone=VisionBackboneConfig( + image_model_type="openai", + image_default_input_size=(336, 336), + image_patch_size=14, + image_pos_patch_size=14, + image_emb_dim=1024, + image_num_heads=16, + image_num_key_value_heads=16, + image_num_layers=23, + image_head_dim=64, + image_mlp_dim=4096, + image_mlp_activations="quick_gelu", + image_dropout_rate=0.0, + image_num_pos=577, + image_norm_eps=1e-5, + attention_dropout=0.0, + residual_dropout=0.0, + initializer_range=0.02, + ) + ) + self.model = Molmo(full_config, init_params=init_params) + else: + self.model = model + + def forward( + self, + input_ids: torch.LongTensor = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + attention_bias: Optional[torch.Tensor] = None, + response_mask: Optional[torch.Tensor] = None, + images: Optional[torch.Tensor] = None, + image_masks: Optional[torch.Tensor] = None, + image_input_idx: Optional[torch.Tensor] = None, + subsegment_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + labels: Optional[torch.LongTensor] = None, + loss_masks: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + last_logits_only: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + append_last_valid_logits: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[ + Cache + ] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426 + ) -> Union[Tuple, CausalLMOutputWithPast]: + if use_cache is None: + use_cache = self.config.use_cache + + if output_attentions: + raise ValueError("output_attentions is not yet supported in Molmo") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.forward( + input_ids=input_ids, + input_embeddings=inputs_embeds, + attention_mask=attention_mask, + attention_bias=attention_bias, + response_mask=response_mask, + images=images, + image_masks=image_masks, + image_input_idx=image_input_idx, + subsegment_ids=subsegment_ids, + position_ids=position_ids, + past_key_values=past_key_values, + use_cache=use_cache, + last_logits_only=last_logits_only, + output_hidden_states=output_hidden_states, + append_last_valid_logits=append_last_valid_logits, + ) + + logits = outputs.logits + hidden_states = outputs.hidden_states + + loss = None + if labels is not None: + if loss_masks is not None: + loss_masks = loss_masks * (loss_masks > 0) + batch_size_in_tokens = max(loss_masks.sum().item(), 1) + labels = labels.long() + labels.masked_fill_(~(loss_masks > 0), -100) + labels = labels.view(-1) + logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1)) + loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none') + loss = loss_fct(logits_for_loss, labels) + loss = loss.view(input_ids.shape[0], -1) + loss = loss * loss_masks + loss = loss.sum() / batch_size_in_tokens + use_zloss = getattr(self.config, "softmax_auxiliary_loss", False) + if use_zloss: + z_squared = logits_for_loss.logsumexp(-1).pow(2) + z_loss = self.config.softmax_auxiliary_loss_scale * z_squared + z_loss = z_loss.view(input_ids.shape[0], -1) + z_loss = z_loss * loss_masks + z_loss = z_loss.sum() / batch_size_in_tokens + loss += z_loss + else: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = torch.nn.CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.embedding_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.attn_key_values, + hidden_states=hidden_states, + ) + + def can_generate(self) -> bool: + return True + + @torch.no_grad() + def generate_from_batch( + self, + batch: Dict[str, Any], + generation_config: Optional[GenerationConfig] = None, + **kwargs, + ): + if generation_config is not None: + assert generation_config.use_cache + + images = batch.get("images") + image_masks = batch.get("image_masks") + image_input_idx = batch.get("image_input_idx") + + # Validate inputs. + input_ids = batch["input_ids"] + batch_size, seq_len = input_ids.shape + attention_mask = batch.get("attention_mask", None) + max_new_tokens = generation_config.max_new_tokens + assert max_new_tokens is not None + mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len + position_ids: Optional[torch.Tensor] = None + append_last_valid_logits: Optional[torch.Tensor] = None + if self.config.use_position_ids and attention_mask is None: + attention_mask = input_ids != -1 + position_ids = torch.clamp( + torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1, + min=0 + ) + append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1 + attention_mask = torch.cat( + [attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))], + dim=1, + ) + if attention_mask is not None: + assert attention_mask.shape == (batch_size, mask_len) + + out = super().generate( + batch["input_ids"], + generation_config, + attention_mask=attention_mask, + images=images, + image_masks=image_masks, + image_input_idx=image_input_idx, + position_ids=position_ids, + append_last_valid_logits=append_last_valid_logits, + **kwargs, + ) + + return out + + def prepare_inputs_for_generation( + self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs + ): + if past_key_values: + # This is because we want the model to only process the last generated token. + input_ids = input_ids[:, -1:] + + if self.config.use_position_ids: + attention_mask = kwargs.get("attention_mask") + images = kwargs.get("images") + image_masks = kwargs.get("image_masks") + image_input_idx = kwargs.get("image_input_idx") + position_ids = kwargs.get("position_ids") + append_last_valid_logits = kwargs.get("append_last_valid_logits") + model_inputs = { + "input_ids": input_ids, + "attention_mask": attention_mask, + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": True, + "last_logits_only": True, + } + if past_key_values is None: + model_inputs["images"] = images + model_inputs["image_masks"] = image_masks + model_inputs["image_input_idx"] = image_input_idx + model_inputs["append_last_valid_logits"] = append_last_valid_logits + else: + model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} + + model_inputs.update(kwargs) + model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache) + return model_inputs + + def _update_model_kwargs_for_generation( + self, + outputs: ModelOutput, + model_kwargs: Dict[str, Any], + is_encoder_decoder: bool = False, + num_new_tokens: int = 1, + ) -> Dict[str, Any]: + if self.config.use_position_ids: + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + if "append_last_valid_logits" in model_kwargs: + del model_kwargs["append_last_valid_logits"] + if "images" in model_kwargs: + del model_kwargs["images"] + del model_kwargs["image_masks"] + del model_kwargs["image_input_idx"] + cache_name, cache = super()._extract_past_from_model_output(outputs) + model_kwargs[cache_name] = cache + model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens + return model_kwargs + + def get_input_embeddings(self) -> torch.nn.Module: + return self.model.transformer.wte + + def set_input_embeddings(self, value: torch.nn.Module): + self.model.transformer.wte = value + + def get_output_embeddings(self): + if self.config.weight_tying: + return self.model.transformer.wte + else: + return self.model.transformer.ff_out + + def set_output_embeddings(self, value: torch.nn.Module): + if self.config.weight_tying: + self.model.transformer.wte = value + else: + self.model.transformer.ff_out = value + + def tie_weights(self): + """ + This function is intentionally left as a no-op. + + Weight tying is handled as follows: + - When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration. + See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`. + - When computing logits, the `wte` weights are used directly if `weight_tying` is enabled. + See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method. + + Therefore, there is no need to explicitly tie the weights in this function. + """ + pass + + def resize_token_embeddings( + self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None + ) -> torch.nn.Embedding: + """ + Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`. + + Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. + + Arguments: + new_num_tokens (`int`, *optional*): + The new number of tokens in the embedding matrix. Increasing the size will add newly initialized + vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just + returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything. + pad_to_multiple_of (`int`, *optional*): + If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to + `None` will just pad the embedding to a multiple of `pad_to_multiple_of`. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability + `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more + details about this, or help on choosing the correct value for resizing, refer to this guide: + https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc + + Return: + `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. + + Note: + This method differs from the base class implementation by resizing the `embedding_size` attribute of the + model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size` + is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token + embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary. + """ + model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + if new_num_tokens is None and pad_to_multiple_of is None: + return model_embeds + + # Update base model and current model config + self.config.embedding_size = model_embeds.weight.shape[0] + self.model.config.embedding_size = model_embeds.weight.shape[0] + + # Check if the embedding size is less than the vocab size + if self.config.embedding_size < self.config.vocab_size: + warning_message = ( + f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size " + f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary " + "size is less than or equal to the new token embedding size." + ) + log.warning(warning_message) + + # Tie weights again if needed + self.tie_weights() + + return model_embeds + + +# Always register for multi-modal features +AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM) \ No newline at end of file