from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig from PIL import Image import requests def main(): load_path = "." # load the processor print("Loading processor") processor = AutoProcessor.from_pretrained( load_path, trust_remote_code=True, torch_dtype='auto', device_map='auto' ) # load the model print("Loading model") model = AutoModelForCausalLM.from_pretrained( load_path, trust_remote_code=True, torch_dtype='auto', device_map='auto' ) # process the image and text print("Processing...") inputs = processor.process( images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], text="Describe this image." ) # move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} # generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated print("Generating....") output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # only get generated tokens; decode them to text generated_tokens = output[0,inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) # print the generated text print(generated_text) if __name__ == '__main__': main()