Safetensors
English
olmo2
amanrangapur commited on
Commit
1e0ba4a
1 Parent(s): 67a1620

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -81
README.md CHANGED
@@ -21,8 +21,8 @@ The core models released in this batch include the following:
21
 
22
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
23
  |------|--------|---------|-------------|-----------------|----------------|
24
- | [OLMo2-7B July 2024](https://huggingface.co/allenai/OLMo-7B-0724-hf) | 4 Trillion | 32 | 4096 | 32 | 4096 |
25
- | [OLMo2- 13B July 2024](https://huggingface.co/allenai/OLMo-1B-0724-hf) | 5 Trillion | 40 | 5120 | 42 | 4096 |
26
 
27
  ## Inference
28
 
@@ -99,15 +99,15 @@ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?
99
  - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
100
  - Evaluation code: https://github.com/allenai/OLMo-Eval
101
  - Further fine-tuning code: https://github.com/allenai/open-instruct
102
- - **Paper:** [Link](https://arxiv.org/abs/2402.00838)
103
- - **Technical blog post:** https://blog.allenai.org/olmo-1-7-7b-a-24-point-improvement-on-mmlu-92b43f7d269d
104
- - **W&B Logs:** [pretraining](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B), [annealing](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B-anneal)
105
 
106
 
107
  <!-- TODO -->
108
  ## Evaluation
109
-
110
- Core model results for OLMo2 7B models are found below:
111
 
112
  | Task | Llama-7b | Llama2-7b | Falcon-7b | Mpt-7b | OLMo-7B | Llama2-13b | OLMo 7B April 2024 | **OLMo2 7B** |
113
  |-------------------|----------|-----------|-----------|--------|---------|------------|--------------------|-----------------------|
@@ -139,71 +139,17 @@ And for OLMo 13B model:
139
  | sciq | 25 | 94.7 | 86 | 90.5 | 88.1 | 93.4 |
140
  | winogrande | 50 | 64.9 | 53.3 | 58.9 | 58.9 | 61.4 |
141
  | Average | 36.11 | 68.41 | 56.44 | 61.48 | 62.42 | 65.0 |
142
-
143
- \*Unlike OLMo, Pythia, and TinyLlama, StabilityAI has not disclosed yet the data StableLM was trained on, making comparisons with other efforts challenging.
144
 
145
  ## Model Details
146
 
147
  ### Data
148
- For training data details, please see the [Dolma](https://huggingface.co/datasets/allenai/dolma) documentation.
149
- **This model uses the new 1.7 version with more data sources, better deduplication, and quality filtering**.
150
- During the annealing phase we use a higher quality subset of Dolma with a linearly decaying learning rate to 0.
151
 
152
  ### Staged training / annealing
 
 
153
 
154
- In contrast to OLMo 1.0, we trained OLMo 7B July with a two-stage curriculum:
155
- * In the first stage, we trained the model from scratch on the Dolma 1.7 dataset. We set a cosine learning rate schedule with a warmup of 2500 steps, a peak learning rate of 3e-4, and a cosine decay to 3e-5 after 3T tokens. We cut off this stage after 2.7T tokens, when the learning rate is still somewhat high.
156
- * At this point we switch to the second stage, in which we train on a higher-quality subset of Dolma 1.7 (see below) for another 50B tokens, while linearly decaying the learning rate to 0. Our high-quality subset includes (1) using all available Wikipedia, OpenWebMath and Flan data, (2) removing Dolma CC, CC News, and Megawika, and (3) rebalancing remaining sources to achieve approximately equal proportions of each. See exact token counts and relative proportions of this second stage mix below.
157
- Both stages contribute equally to the final performance of the OLMo model. After the first stage, OLMo 1.7 already outperforms OLMo 1.0. The second stage consistently adds 2 to 3 points of performance on top.
158
-
159
-
160
- <!-- ### Architecture
161
-
162
- OLMo2 7B architecture with peer models for comparison.
163
-
164
- | | **OLMo2 7B** | [OLMo2 13B](https://huggingface.co/allenai/OLMo2-13B-1124) | [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b) | [OpenLM 7B](https://laion.ai/blog/open-lm/) | [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) | PaLM 8B |
165
- |------------------------|-------------------|-------------------|---------------------|--------------------|--------------------|------------------|
166
- | d_model | 4096 | 4096 | 4096 | 4096 | 4544 | 4096 |
167
- | num heads | 32 | 42 | 32 | 32 | 71 | 16 |
168
- | num layers | 32 | 40 | 32 | 32 | 32 | 32 |
169
- | MLP ratio | ~8/3 | ~8/3 | ~8/3 | ~8/3 | 4 | 4 |
170
- | LayerNorm type | RMS Norm | RMS Norm | RMSNorm | parametric LN | parametric LN | parametric LN |
171
- | pos embeddings | RoPE | RoPE | RoPE | RoPE | RoPE | RoPE |
172
- | attention variant | full | full | GQA | full | MQA | MQA |
173
- | biases | none | none | none | in LN only | in LN only | none |
174
- | block type | sequential | sequential | sequential | sequential | parallel | parallel |
175
- | activation | SwiGLU | SwiGLU | SwiGLU | SwiGLU | GeLU | SwiGLU |
176
- | sequence length | 4096 | 4096 | 4096 | 2048 | 2048 | 2048 |
177
- | batch size (instances) | 1024 | 2048 | 1024 | 2048 | 2304 | 512 |
178
- | batch size (tokens) | ~4M | ~4M | ~4M | ~4M | ~4M | ~1M |
179
- | weight tying | no | no | no | no | no | yes |
180
-
181
-
182
- ### Hyperparameters
183
-
184
- AdamW optimizer parameters are shown below.
185
-
186
- | Size | Peak LR | Betas | Epsilon | Weight Decay |
187
- |------|------------|-----------------|-------------|--------------|
188
- | 7B | 3.0E-4 | (0.9, 0.95) | 1.0E-8 | 0.1 |
189
- | 13B | 9.0E-4 | (0.9, 0.95) | 1.0E-8 | 0.1 |
190
-
191
- Optimizer settings comparison with peer models.
192
-
193
- | | **OLMo2 7B** | [OLMo2 13B](https://huggingface.co/allenai/OLMo2-13B-1124) | [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b) | [OpenLM 7B](https://laion.ai/blog/open-lm/) | [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) |
194
- |-----------------------|------------------|------------------|---------------------|--------------------|--------------------|
195
- | warmup steps | 2000 | 2000 | 2000 | 2000 | 1000 |
196
- | peak LR | 3.0E-04 | 9.0E-04 | 3.0E-04 | 3.0E-04 | 6.0E-04 |
197
- | minimum LR | 3.0E-05 | 3.0E-05 | 3.0E-05 | 3.0E-05 | 1.2E-05 |
198
- | weight decay | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
199
- | beta1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.99 |
200
- | beta2 | 0.95 | 0.95 | 0.95 | 0.95 | 0.999 |
201
- | epsilon | 1.0E-08 | 1.0E-08 | 1.0E-05 | 1.0E-05 | 1.0E-05 |
202
- | LR schedule | cosine | cosine | cosine | cosine | cosine |
203
- | gradient clipping | global 1.0 | global 1.0 | global 1.0 | global 1.0 | global 1.0 |
204
- | gradient reduce dtype | FP32 | FP32 | FP32 | FP32 | BF16 |
205
- | optimizer state dtype | FP32 | FP32 | most likely FP32 | FP32 | FP32 |
206
- -->
207
 
208
 
209
  ## Bias, Risks, and Limitations
@@ -211,23 +157,9 @@ Optimizer settings comparison with peer models.
211
  Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.
212
 
213
 
214
- <!-- ## Citation
215
-
216
- **BibTeX:**
217
 
218
- ```
219
- @article{Groeneveld2023OLMo,
220
- title={OLMo: Accelerating the Science of Language Models},
221
- author={Groeneveld, Dirk and Beltagy, Iz and Walsh, Pete and Bhagia, Akshita and Kinney, Rodney and Tafjord, Oyvind and Jha, Ananya Harsh and Ivison, Hamish and Magnusson, Ian and Wang, Yizhong and Arora, Shane and Atkinson, David and Authur, Russell and Chandu, Khyathi and Cohan, Arman and Dumas, Jennifer and Elazar, Yanai and Gu, Yuling and Hessel, Jack and Khot, Tushar and Merrill, William and Morrison, Jacob and Muennighoff, Niklas and Naik, Aakanksha and Nam, Crystal and Peters, Matthew E. and Pyatkin, Valentina and Ravichander, Abhilasha and Schwenk, Dustin and Shah, Saurabh and Smith, Will and Subramani, Nishant and Wortsman, Mitchell and Dasigi, Pradeep and Lambert, Nathan and Richardson, Kyle and Dodge, Jesse and Lo, Kyle and Soldaini, Luca and Smith, Noah A. and Hajishirzi, Hannaneh},
222
- journal={Preprint},
223
- year={2024}
224
- }
225
- ```
226
-
227
- **APA:**
228
-
229
- Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A., Ivison, H., Magnusson, I., Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu, K., Cohan, A., Dumas, J., Elazar, Y., Gu, Y., Hessel, J., Khot, T., Merrill, W., Morrison, J., Muennighoff, N., Naik, A., Nam, C., Peters, M., Pyatkin, V., Ravichander, A., Schwenk, D., Shah, S., Smith, W., Subramani, N., Wortsman, M., Dasigi, P., Lambert, N., Richardson, K., Dodge, J., Lo, K., Soldaini, L., Smith, N., & Hajishirzi, H. (2024). OLMo: Accelerating the Science of Language Models. Preprint.
230
- -->
231
  ## Model Card Contact
232
 
233
 
 
21
 
22
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
23
  |------|--------|---------|-------------|-----------------|----------------|
24
+ | [OLMo2-7B July 2024](https://huggingface.co/allenai/OLMo-2-7B-1124) | 4 Trillion | 32 | 4096 | 32 | 4096 |
25
+ | [OLMo2- 13B July 2024](https://huggingface.co/allenai/OLMo-2-13B-1124) | 5 Trillion | 40 | 5120 | 42 | 4096 |
26
 
27
  ## Inference
28
 
 
99
  - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
100
  - Evaluation code: https://github.com/allenai/OLMo-Eval
101
  - Further fine-tuning code: https://github.com/allenai/open-instruct
102
+ <!-- - **Paper:** [Link](https://arxiv.org/abs/2402.00838) -->
103
+ <!-- - **Technical blog post:** https://blog.allenai.org/olmo-1-7-7b-a-24-point-improvement-on-mmlu-92b43f7d269d -->
104
+ <!-- - **W&B Logs:** [pretraining](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B), [annealing](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B-anneal) -->
105
 
106
 
107
  <!-- TODO -->
108
  ## Evaluation
109
+ `TODO`
110
+ <!-- Core model results for OLMo2 7B models are found below:
111
 
112
  | Task | Llama-7b | Llama2-7b | Falcon-7b | Mpt-7b | OLMo-7B | Llama2-13b | OLMo 7B April 2024 | **OLMo2 7B** |
113
  |-------------------|----------|-----------|-----------|--------|---------|------------|--------------------|-----------------------|
 
139
  | sciq | 25 | 94.7 | 86 | 90.5 | 88.1 | 93.4 |
140
  | winogrande | 50 | 64.9 | 53.3 | 58.9 | 58.9 | 61.4 |
141
  | Average | 36.11 | 68.41 | 56.44 | 61.48 | 62.42 | 65.0 |
142
+ -->
 
143
 
144
  ## Model Details
145
 
146
  ### Data
147
+ `TODO`
 
 
148
 
149
  ### Staged training / annealing
150
+ `TODO`
151
+
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
 
155
  ## Bias, Risks, and Limitations
 
157
  Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.
158
 
159
 
160
+ ## Citation
161
+ `TODO`
 
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
  ## Model Card Contact
164
 
165