Safetensors
English
olmo2
amanrangapur commited on
Commit
4ad5f80
1 Parent(s): e62014f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -16
README.md CHANGED
@@ -9,21 +9,31 @@ language:
9
 
10
  ## Model Details
11
 
12
- <img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
13
 
14
 
15
- # Model Card for OLMo2 7B
16
 
17
- We introduce OLMo2, a new family of 7B and 13B models featuring a 9-point increase in MMLU, among other evaluation improvements, compared to the original [OLMo 7B](https://huggingface.co/allenai/OLMo-7B) model. These gains come from an improved version of the Dolma dataset and staged training approach.
18
 
19
  OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
20
  These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details.
21
- The core models released in this batch include the following:
22
 
23
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
24
  |------|--------|---------|-------------|-----------------|----------------|
25
- | [OLMo2-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) | 4 Trillion | 32 | 4096 | 32 | 4096 |
26
- | [OLMo2- 13B](https://huggingface.co/allenai/OLMo-2-1124-13B) | 5 Trillion | 40 | 5120 | 42 | 4096 |
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  ## Inference
29
 
@@ -85,12 +95,11 @@ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?
85
  ### Model Description
86
 
87
  - **Developed by:** Allen Institute for AI (Ai2)
88
- - **Supported by:** Databricks, Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University, AMD, CSC (Lumi Supercomputer), UW
89
  - **Model type:** a Transformer style autoregressive language model.
90
  - **Language(s) (NLP):** English
91
  - **License:** The code and model are released under Apache 2.0.
92
- - **Contact:** Technical inquiries: `olmo at allenai dot org`. Press: `press at allenai dot org`
93
- - **Date cutoff:** Oct. 2023, with most data from Feb./March 2023 based on Dolma dataset version.
94
 
95
 
96
  ### Model Sources
@@ -100,13 +109,13 @@ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?
100
  - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
101
  - Evaluation code: https://github.com/allenai/OLMo-Eval
102
  - Further fine-tuning code: https://github.com/allenai/open-instruct
103
- <!-- - **Paper:** [Link](https://arxiv.org/abs/2402.00838) -->
104
  <!-- - **Technical blog post:** https://blog.allenai.org/olmo-1-7-7b-a-24-point-improvement-on-mmlu-92b43f7d269d -->
105
  <!-- - **W&B Logs:** [pretraining](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B), [annealing](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B-anneal) -->
106
 
107
 
108
  ## Evaluation
109
- Core model results for OLMo2 7B and 13B models are found below.
110
 
111
  | Model | Train FLOPs | Average | ARC/C | HSwag | WinoG | MMLU | DROP | NQ | AGIEval | GSM8k | MMWLUPro | TriviaQA |
112
  |-------------------|------------|---------|--------|--------|--------|-------|-------|-----|----------|--------|-----------|-----------|
@@ -156,14 +165,11 @@ Core model results for OLMo2 7B and 13B models are found below.
156
 
157
 
158
  ## Bias, Risks, and Limitations
159
-
160
  Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.
161
 
162
 
163
  ## Citation
164
- `TODO`
165
 
166
  ## Model Card Contact
167
-
168
-
169
- For errors in this model card, contact Aman, `{amanr} at allenai dot org`.
 
9
 
10
  ## Model Details
11
 
12
+ <img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px" style="margin-left:'auto' margin-right:'auto' display:'block'">
13
 
14
 
15
+ # Model Card for OLMo 2 7B
16
 
17
+ We introduce OLMo 2, a new family of 7B and 13B models featuring a 9-point increase in MMLU, among other evaluation improvements, compared to the original [OLMo 7B](https://huggingface.co/allenai/OLMo-7B) model. These gains come from training on [OLMo-mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124) and [Dolmino-mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124) datasets and staged training approach.
18
 
19
  OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
20
  These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details.
 
21
 
22
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
23
  |------|--------|---------|-------------|-----------------|----------------|
24
+ | [OLMo 2-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) | 4 Trillion | 32 | 4096 | 32 | 4096 |
25
+ | [OLMo 2-13B](https://huggingface.co/allenai/OLMo-2-1124-13B) | 5 Trillion | 40 | 5120 | 42 | 4096 |
26
+
27
+ The core models released in this batch include the following:
28
+
29
+ | **Stage** | **OLMo 2 7B** | **OLMo 2 13B** |
30
+ |----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
31
+ | **Base Model** | [allenai/OLMo2-7B-1124](https://huggingface.co/allenai/OLMo2-7B-1124) | [allenai/OLMo-2-13B-1124](https://huggingface.co/allenai/OLMo-2-13B-1124) |
32
+ | **SFT** | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT) | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT) |
33
+ | **DPO** | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO) | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO) |
34
+ | **Final Models (RLVR)** | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct) |
35
+ | **Reward Model (RM)**| [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM) | (Same as 8B) |
36
+
37
 
38
  ## Inference
39
 
 
95
  ### Model Description
96
 
97
  - **Developed by:** Allen Institute for AI (Ai2)
 
98
  - **Model type:** a Transformer style autoregressive language model.
99
  - **Language(s) (NLP):** English
100
  - **License:** The code and model are released under Apache 2.0.
101
+ - **Contact:** Technical inquiries: `olmo@allenai.org`. Press: `press@allenai.org`
102
+ - **Date cutoff:** Dec. 2023.
103
 
104
 
105
  ### Model Sources
 
109
  - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
110
  - Evaluation code: https://github.com/allenai/OLMo-Eval
111
  - Further fine-tuning code: https://github.com/allenai/open-instruct
112
+ - **Paper:** Coming soon
113
  <!-- - **Technical blog post:** https://blog.allenai.org/olmo-1-7-7b-a-24-point-improvement-on-mmlu-92b43f7d269d -->
114
  <!-- - **W&B Logs:** [pretraining](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B), [annealing](https://wandb.ai/ai2-llm/OLMo-7B/groups/OLMo-1.7-7B-anneal) -->
115
 
116
 
117
  ## Evaluation
118
+ Core model results for OLMo 2 7B and 13B models are found below.
119
 
120
  | Model | Train FLOPs | Average | ARC/C | HSwag | WinoG | MMLU | DROP | NQ | AGIEval | GSM8k | MMWLUPro | TriviaQA |
121
  |-------------------|------------|---------|--------|--------|--------|-------|-------|-----|----------|--------|-----------|-----------|
 
165
 
166
 
167
  ## Bias, Risks, and Limitations
 
168
  Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.
169
 
170
 
171
  ## Citation
172
+ A technical manuscript is forthcoming!
173
 
174
  ## Model Card Contact
175
+ For errors in this model card, contact `olmo@allenai.org`.