shanearora commited on
Commit
c52ca52
1 Parent(s): 62dcbf0

add model and config files from transformers PR

Browse files
Files changed (2) hide show
  1. configuration_olmo_1124.py +166 -0
  2. modeling_olmo_1124.py +1095 -0
configuration_olmo_1124.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/olmo_1124/modular_olmo_1124.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_olmo_1124.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+
8
+ from ...configuration_utils import PretrainedConfig
9
+
10
+
11
+ class Olmo1124Config(PretrainedConfig):
12
+ r"""
13
+ This is the configuration class to store the configuration of a [`Olmo1124Model`]. It is used to instantiate an OLMo November 2024
14
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
15
+ defaults will yield a similar configuration to that of the [allenai/Olmo1124-7B-hf](https://huggingface.co/allenai/Olmo1124-7B-hf).
16
+
17
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
18
+ documentation from [`PretrainedConfig`] for more information.
19
+
20
+
21
+ Args:
22
+ vocab_size (`int`, *optional*, defaults to 50304):
23
+ Vocabulary size of the Olmo1124 model. Defines the number of different tokens that can be represented by the
24
+ `inputs_ids` passed when calling [`Olmo1124Model`]
25
+ hidden_size (`int`, *optional*, defaults to 4096):
26
+ Dimension of the hidden representations.
27
+ intermediate_size (`int`, *optional*, defaults to 11008):
28
+ Dimension of the MLP representations.
29
+ num_hidden_layers (`int`, *optional*, defaults to 32):
30
+ Number of hidden layers in the Transformer decoder.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ num_key_value_heads (`int`, *optional*):
34
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
35
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
36
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
37
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
38
+ by meanpooling all the original heads within that group. For more details checkout [this
39
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
40
+ `num_attention_heads`.
41
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
42
+ The non-linear activation function (function or string) in the decoder.
43
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
44
+ The maximum sequence length that this model might ever be used with.
45
+ initializer_range (`float`, *optional*, defaults to 0.02):
46
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
47
+ use_cache (`bool`, *optional*, defaults to `True`):
48
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
49
+ relevant if `config.is_decoder=True`.
50
+ pad_token_id (`int`, *optional*, defaults to 1):
51
+ Padding token id.
52
+ bos_token_id (`int`, *optional*):
53
+ Beginning of stream token id.
54
+ eos_token_id (`int`, *optional*, defaults to 50279):
55
+ End of stream token id.
56
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
57
+ Whether to tie weight embeddings
58
+ rope_theta (`float`, *optional*, defaults to 10000.0):
59
+ The base period of the RoPE embeddings.
60
+ rope_scaling (`Dict`, *optional*):
61
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
62
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
63
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
64
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
65
+ these scaling strategies behave:
66
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
67
+ experimental feature, subject to breaking API changes in future versions.
68
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
69
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
70
+ attention_dropout (`float`, *optional*, defaults to 0.0):
71
+ The dropout ratio for the attention probabilities.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
73
+ The epsilon used by the rms normalization layers.
74
+
75
+ ```python
76
+ >>> from transformers import Olmo1124Model, Olmo1124Config
77
+
78
+ >>> # Initializing a Olmo November 2024 7B style configuration
79
+ >>> configuration = Olmo1124Config()
80
+
81
+ >>> # Initializing a model from the Olmo November 2024 7B style configuration
82
+ >>> model = Olmo1124Model(configuration)
83
+
84
+ >>> # Accessing the model configuration
85
+ >>> configuration = model.config
86
+ ```
87
+ """
88
+
89
+ model_type = "olmo_1124"
90
+ keys_to_ignore_at_inference = ["past_key_values"]
91
+
92
+ def __init__(
93
+ self,
94
+ vocab_size=50304,
95
+ hidden_size=4096,
96
+ intermediate_size=11008,
97
+ num_hidden_layers=32,
98
+ num_attention_heads=32,
99
+ num_key_value_heads=None,
100
+ hidden_act="silu",
101
+ max_position_embeddings=2048,
102
+ initializer_range=0.02,
103
+ use_cache=True,
104
+ pad_token_id=1,
105
+ bos_token_id=None,
106
+ eos_token_id=50279,
107
+ tie_word_embeddings=False,
108
+ rope_theta=10000.0,
109
+ rope_scaling=None,
110
+ attention_bias=False,
111
+ attention_dropout=0.0,
112
+ rms_norm_eps=1e-5,
113
+ **kwargs,
114
+ ):
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
122
+ self.vocab_size = vocab_size
123
+ self.max_position_embeddings = max_position_embeddings
124
+ self.hidden_size = hidden_size
125
+ self.intermediate_size = intermediate_size
126
+ self.num_hidden_layers = num_hidden_layers
127
+ self.num_attention_heads = num_attention_heads
128
+
129
+ # for backward compatibility
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+
133
+ self.num_key_value_heads = num_key_value_heads
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.use_cache = use_cache
137
+ self.rope_theta = rope_theta
138
+ self.rope_scaling = rope_scaling
139
+ self._rope_scaling_validation()
140
+ self.attention_bias = attention_bias
141
+ self.attention_dropout = attention_dropout
142
+
143
+ self.rms_norm_eps = rms_norm_eps
144
+
145
+ def _rope_scaling_validation(self):
146
+ """
147
+ Validate the `rope_scaling` configuration.
148
+ """
149
+ if self.rope_scaling is None:
150
+ return
151
+
152
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
153
+ raise ValueError(
154
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
155
+ )
156
+ rope_scaling_type = self.rope_scaling.get("type", None)
157
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
158
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
159
+ raise ValueError(
160
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
161
+ )
162
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
163
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
164
+
165
+
166
+ __all__ = ["Olmo1124Config"]
modeling_olmo_1124.py ADDED
@@ -0,0 +1,1095 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/olmo_1124/modular_olmo_1124.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_olmo_1124.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ import math
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+ from ...activations import ACT2FN
14
+ from ...cache_utils import Cache, DynamicCache, StaticCache
15
+ from ...generation import GenerationMixin
16
+ from ...modeling_attn_mask_utils import AttentionMaskConverter
17
+ from ...modeling_flash_attention_utils import _flash_attention_forward
18
+ from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
19
+ from ...modeling_utils import PreTrainedModel
20
+ from ...utils import (
21
+ add_start_docstrings,
22
+ add_start_docstrings_to_model_forward,
23
+ is_flash_attn_2_available,
24
+ is_flash_attn_greater_or_equal_2_10,
25
+ logging,
26
+ replace_return_docstrings,
27
+ )
28
+ from .configuration_olmo_1124 import Olmo1124Config
29
+
30
+
31
+ if is_flash_attn_2_available():
32
+ from ...modeling_flash_attention_utils import _flash_attention_forward
33
+
34
+
35
+ logger = logging.get_logger(__name__)
36
+
37
+ _CONFIG_FOR_DOC = "Olmo1124Config"
38
+
39
+
40
+ class Olmo1124RMSNorm(nn.Module):
41
+ def __init__(self, hidden_size, eps=1e-6):
42
+ """
43
+ Olmo1124RMSNorm is equivalent to T5LayerNorm
44
+ """
45
+ super().__init__()
46
+ self.weight = nn.Parameter(torch.ones(hidden_size))
47
+ self.variance_epsilon = eps
48
+
49
+ def forward(self, hidden_states):
50
+ input_dtype = hidden_states.dtype
51
+ hidden_states = hidden_states.to(torch.float32)
52
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
53
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
54
+ return self.weight * hidden_states.to(input_dtype)
55
+
56
+ def extra_repr(self):
57
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
58
+
59
+
60
+ # copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Olmo1124
61
+ # TODO(joao): add me back asap :)
62
+ class Olmo1124RotaryEmbedding(nn.Module):
63
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
64
+ super().__init__()
65
+ self.scaling_factor = scaling_factor
66
+ self.dim = dim
67
+ self.max_position_embeddings = max_position_embeddings
68
+ self.base = base
69
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
70
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
71
+ # For BC we register cos and sin cached
72
+ self.max_seq_len_cached = max_position_embeddings
73
+
74
+ @torch.no_grad()
75
+ def forward(self, x, position_ids):
76
+ # x: [bs, num_attention_heads, seq_len, head_size]
77
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
78
+ position_ids_expanded = position_ids[:, None, :].float()
79
+ # Force float32 since bfloat16 loses precision on long contexts
80
+ # See https://github.com/huggingface/transformers/pull/29285
81
+ device_type = x.device.type
82
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
83
+ with torch.autocast(device_type=device_type, enabled=False):
84
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
85
+ emb = torch.cat((freqs, freqs), dim=-1)
86
+ cos = emb.cos()
87
+ sin = emb.sin()
88
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
89
+
90
+
91
+ # copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Olmo1124
92
+ # TODO(joao): add me back asap :)
93
+ class Olmo1124LinearScalingRotaryEmbedding(Olmo1124RotaryEmbedding):
94
+ """Olmo1124RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
95
+
96
+ def forward(self, x, position_ids):
97
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
98
+ position_ids = position_ids.float() / self.scaling_factor
99
+ cos, sin = super().forward(x, position_ids)
100
+ return cos, sin
101
+
102
+
103
+ # copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Olmo1124
104
+ # TODO(joao): add me back asap :)
105
+ class Olmo1124DynamicNTKScalingRotaryEmbedding(Olmo1124RotaryEmbedding):
106
+ """Olmo1124RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
107
+
108
+ def forward(self, x, position_ids):
109
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
110
+ seq_len = torch.max(position_ids) + 1
111
+ if seq_len > self.max_position_embeddings:
112
+ base = self.base * (
113
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
114
+ ) ** (self.dim / (self.dim - 2))
115
+ inv_freq = 1.0 / (
116
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
117
+ )
118
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
119
+
120
+ cos, sin = super().forward(x, position_ids)
121
+ return cos, sin
122
+
123
+
124
+ def rotate_half(x):
125
+ """Rotates half the hidden dims of the input."""
126
+ x1 = x[..., : x.shape[-1] // 2]
127
+ x2 = x[..., x.shape[-1] // 2 :]
128
+ return torch.cat((-x2, x1), dim=-1)
129
+
130
+
131
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
132
+ """Applies Rotary Position Embedding to the query and key tensors.
133
+
134
+ Args:
135
+ q (`torch.Tensor`): The query tensor.
136
+ k (`torch.Tensor`): The key tensor.
137
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
138
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
139
+ position_ids (`torch.Tensor`, *optional*):
140
+ Deprecated and unused.
141
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
142
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
143
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
144
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
145
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
146
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
147
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
148
+ Returns:
149
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
150
+ """
151
+ cos = cos.unsqueeze(unsqueeze_dim)
152
+ sin = sin.unsqueeze(unsqueeze_dim)
153
+ q_embed = (q * cos) + (rotate_half(q) * sin)
154
+ k_embed = (k * cos) + (rotate_half(k) * sin)
155
+ return q_embed, k_embed
156
+
157
+
158
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
159
+ """
160
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
161
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
162
+ """
163
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
164
+ if n_rep == 1:
165
+ return hidden_states
166
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
167
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
168
+
169
+
170
+ class Olmo1124Attention(nn.Module):
171
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
172
+
173
+ # copied from transformers.models.llama.modeling_llama.LlamaAttention.__init__ with Llama->Olmo1124
174
+ # TODO(joao): add me back asap :)
175
+ def __init__(self, config: Olmo1124Config, layer_idx: Optional[int] = None):
176
+ super().__init__()
177
+ self.config = config
178
+ self.layer_idx = layer_idx
179
+ if layer_idx is None:
180
+ logger.warning_once(
181
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
182
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
183
+ "when creating this class."
184
+ )
185
+
186
+ self.attention_dropout = config.attention_dropout
187
+ self.hidden_size = config.hidden_size
188
+ self.num_heads = config.num_attention_heads
189
+ self.head_dim = self.hidden_size // self.num_heads
190
+ self.num_key_value_heads = config.num_key_value_heads
191
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
192
+ self.max_position_embeddings = config.max_position_embeddings
193
+ self.rope_theta = config.rope_theta
194
+ self.is_causal = True
195
+
196
+ if (self.head_dim * self.num_heads) != self.hidden_size:
197
+ raise ValueError(
198
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
199
+ f" and `num_heads`: {self.num_heads})."
200
+ )
201
+
202
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
203
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
204
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
205
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
206
+ self._init_rope()
207
+ self.q_norm = Olmo1124RMSNorm(self.num_heads * self.head_dim, config.rms_norm_eps)
208
+ self.k_norm = Olmo1124RMSNorm(self.num_key_value_heads * self.head_dim, config.rms_norm_eps)
209
+
210
+ def _init_rope(self):
211
+ if self.config.rope_scaling is None:
212
+ self.rotary_emb = Olmo1124RotaryEmbedding(
213
+ self.head_dim,
214
+ max_position_embeddings=self.max_position_embeddings,
215
+ base=self.rope_theta,
216
+ )
217
+ else:
218
+ scaling_type = self.config.rope_scaling["type"]
219
+ scaling_factor = self.config.rope_scaling["factor"]
220
+ if scaling_type == "linear":
221
+ self.rotary_emb = Olmo1124LinearScalingRotaryEmbedding(
222
+ self.head_dim,
223
+ max_position_embeddings=self.max_position_embeddings,
224
+ scaling_factor=scaling_factor,
225
+ base=self.rope_theta,
226
+ )
227
+ elif scaling_type == "dynamic":
228
+ self.rotary_emb = Olmo1124DynamicNTKScalingRotaryEmbedding(
229
+ self.head_dim,
230
+ max_position_embeddings=self.max_position_embeddings,
231
+ scaling_factor=scaling_factor,
232
+ base=self.rope_theta,
233
+ )
234
+ else:
235
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
236
+
237
+ def forward(
238
+ self,
239
+ hidden_states: torch.Tensor,
240
+ attention_mask: Optional[torch.Tensor] = None,
241
+ position_ids: Optional[torch.LongTensor] = None,
242
+ past_key_value: Optional[Cache] = None,
243
+ output_attentions: bool = False,
244
+ use_cache: bool = False,
245
+ cache_position: Optional[torch.LongTensor] = None,
246
+ **kwargs,
247
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
248
+ bsz, q_len, _ = hidden_states.size()
249
+
250
+ query_states = self.q_norm(self.q_proj(hidden_states))
251
+ key_states = self.k_norm(self.k_proj(hidden_states))
252
+ value_states = self.v_proj(hidden_states)
253
+
254
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
255
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
256
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
257
+
258
+ cos, sin = self.rotary_emb(value_states, position_ids)
259
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
260
+
261
+ if past_key_value is not None:
262
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
263
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
264
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
265
+
266
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
267
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
268
+
269
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
270
+
271
+ if attention_mask is not None: # no matter the length, we just slice it
272
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
273
+ attn_weights = attn_weights + causal_mask
274
+
275
+ # upcast attention to fp32
276
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
277
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
278
+ attn_output = torch.matmul(attn_weights, value_states)
279
+
280
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
281
+ raise ValueError(
282
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
283
+ f" {attn_output.size()}"
284
+ )
285
+
286
+ attn_output = attn_output.transpose(1, 2).contiguous()
287
+
288
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
289
+
290
+ attn_output = self.o_proj(attn_output)
291
+
292
+ if not output_attentions:
293
+ attn_weights = None
294
+
295
+ return attn_output, attn_weights, past_key_value
296
+
297
+
298
+ class Olmo1124FlashAttention2(Olmo1124Attention):
299
+ """
300
+ Olmo1124 flash attention module. This module inherits from `Olmo1124Attention` as the weights of the module stays
301
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
302
+ flash attention and deal with padding tokens in case the input contains any of them.
303
+
304
+ OLMo November 2024 flash attention module. This module inherits from `Olmo1124Attention` as the weights of the module stays
305
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
306
+ flash attention and deal with padding tokens in case the input contains any of them.
307
+ """
308
+
309
+ def __init__(self, *args, **kwargs):
310
+ super().__init__(*args, **kwargs)
311
+
312
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
313
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
314
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
315
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
316
+
317
+ def forward(
318
+ self,
319
+ hidden_states: torch.Tensor,
320
+ attention_mask: Optional[torch.LongTensor] = None,
321
+ position_ids: Optional[torch.LongTensor] = None,
322
+ past_key_value: Optional[Cache] = None,
323
+ output_attentions: bool = False,
324
+ use_cache: bool = False,
325
+ cache_position: Optional[torch.LongTensor] = None,
326
+ **kwargs,
327
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
328
+ output_attentions = False
329
+
330
+ bsz, q_len, _ = hidden_states.size()
331
+
332
+ query_states = self.q_norm(self.q_proj(hidden_states))
333
+ key_states = self.k_norm(self.k_proj(hidden_states))
334
+ value_states = self.v_proj(hidden_states)
335
+
336
+ # Flash attention requires the input to have the shape
337
+ # batch_size x seq_length x head_dim x hidden_dim
338
+ # therefore we just need to keep the original shape
339
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
340
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
341
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
342
+
343
+ cos, sin = self.rotary_emb(value_states, position_ids)
344
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
345
+
346
+ if past_key_value is not None:
347
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
348
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
349
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
350
+
351
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
352
+ # to be able to avoid many of these transpose/reshape/view.
353
+ query_states = query_states.transpose(1, 2)
354
+ key_states = key_states.transpose(1, 2)
355
+ value_states = value_states.transpose(1, 2)
356
+
357
+ dropout_rate = self.attention_dropout if self.training else 0.0
358
+
359
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
360
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
361
+ # cast them back in the correct dtype just to be sure everything works as expected.
362
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
363
+ # in fp32. (OlmoRMSNorm handles it correctly)
364
+
365
+ input_dtype = query_states.dtype
366
+ if input_dtype == torch.float32:
367
+ if torch.is_autocast_enabled():
368
+ target_dtype = torch.get_autocast_gpu_dtype()
369
+ # Handle the case where the model is quantized
370
+ elif hasattr(self.config, "_pre_quantization_dtype"):
371
+ target_dtype = self.config._pre_quantization_dtype
372
+ else:
373
+ target_dtype = self.q_proj.weight.dtype
374
+
375
+ logger.warning_once(
376
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
377
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
378
+ f" {target_dtype}."
379
+ )
380
+
381
+ query_states = query_states.to(target_dtype)
382
+ key_states = key_states.to(target_dtype)
383
+ value_states = value_states.to(target_dtype)
384
+
385
+ attn_output = _flash_attention_forward(
386
+ query_states,
387
+ key_states,
388
+ value_states,
389
+ attention_mask,
390
+ q_len,
391
+ position_ids=position_ids,
392
+ dropout=dropout_rate,
393
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
394
+ is_causal=self.is_causal,
395
+ )
396
+
397
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
398
+ attn_output = self.o_proj(attn_output)
399
+
400
+ if not output_attentions:
401
+ attn_weights = None
402
+
403
+ return attn_output, attn_weights, past_key_value
404
+
405
+
406
+ class Olmo1124SdpaAttention(Olmo1124Attention):
407
+ """
408
+ Olmo1124 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
409
+ `Olmo1124Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
410
+ SDPA API.
411
+ """
412
+
413
+ # Adapted from Olmo1124Attention.forward
414
+ def forward(
415
+ self,
416
+ hidden_states: torch.Tensor,
417
+ attention_mask: Optional[torch.Tensor] = None,
418
+ position_ids: Optional[torch.LongTensor] = None,
419
+ past_key_value: Optional[Cache] = None,
420
+ output_attentions: bool = False,
421
+ use_cache: bool = False,
422
+ cache_position: Optional[torch.LongTensor] = None,
423
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
424
+ if output_attentions:
425
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
426
+ logger.warning_once(
427
+ "Olmo1124Model is using Olmo1124SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
428
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
429
+ )
430
+ return super().forward(
431
+ hidden_states=hidden_states,
432
+ attention_mask=attention_mask,
433
+ position_ids=position_ids,
434
+ past_key_value=past_key_value,
435
+ output_attentions=output_attentions,
436
+ use_cache=use_cache,
437
+ cache_position=cache_position,
438
+ )
439
+ bsz, q_len, _ = hidden_states.size()
440
+ query_states = self.q_norm(self.q_proj(hidden_states))
441
+ key_states = self.k_norm(self.k_proj(hidden_states))
442
+ value_states = self.v_proj(hidden_states)
443
+
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
447
+ cos, sin = self.rotary_emb(value_states, position_ids)
448
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
449
+ if past_key_value is not None:
450
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
451
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
452
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
453
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
454
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
455
+ causal_mask = attention_mask
456
+ # if attention_mask is not None and cache_position is not None:
457
+ if attention_mask is not None:
458
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
459
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
460
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
461
+ if query_states.device.type == "cuda" and causal_mask is not None:
462
+ query_states = query_states.contiguous()
463
+ key_states = key_states.contiguous()
464
+ value_states = value_states.contiguous()
465
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
466
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
467
+ is_causal = True if causal_mask is None and q_len > 1 else False
468
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
469
+ query_states,
470
+ key_states,
471
+ value_states,
472
+ attn_mask=causal_mask,
473
+ dropout_p=self.attention_dropout if self.training else 0.0,
474
+ is_causal=is_causal,
475
+ )
476
+ attn_output = attn_output.transpose(1, 2).contiguous()
477
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
478
+ attn_output = self.o_proj(attn_output)
479
+ return attn_output, None, past_key_value
480
+
481
+
482
+ class Olmo1124MLP(nn.Module):
483
+ def __init__(self, config):
484
+ super().__init__()
485
+ self.config = config
486
+ self.hidden_size = config.hidden_size
487
+ self.intermediate_size = config.intermediate_size
488
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
489
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
490
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
491
+ self.act_fn = ACT2FN[config.hidden_act]
492
+
493
+ def forward(self, x):
494
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
495
+
496
+
497
+ OLMO_1124_ATTENTION_CLASSES = {
498
+ "eager": Olmo1124Attention,
499
+ "flash_attention_2": Olmo1124FlashAttention2,
500
+ "sdpa": Olmo1124SdpaAttention,
501
+ }
502
+
503
+
504
+ class Olmo1124DecoderLayer(nn.Module):
505
+ def __init__(self, config: Olmo1124Config, layer_idx: int):
506
+ super().__init__()
507
+ self.hidden_size = config.hidden_size
508
+
509
+ self.self_attn = OLMO_1124_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
510
+
511
+ self.mlp = Olmo1124MLP(config)
512
+ self.post_attention_layernorm = Olmo1124RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
513
+ self.post_feedforward_layernorm = Olmo1124RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
514
+
515
+ # copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer.forward
516
+ # TODO(joao): add me back asap :)
517
+ def forward(
518
+ self,
519
+ hidden_states: torch.Tensor,
520
+ attention_mask: Optional[torch.Tensor] = None,
521
+ position_ids: Optional[torch.LongTensor] = None,
522
+ past_key_value: Optional[Cache] = None,
523
+ output_attentions: Optional[bool] = False,
524
+ use_cache: Optional[bool] = False,
525
+ cache_position: Optional[torch.LongTensor] = None,
526
+ **kwargs,
527
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
528
+ """
529
+ Args:
530
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
531
+ attention_mask (`torch.FloatTensor`, *optional*):
532
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
533
+ query_sequence_length, key_sequence_length)` if default attention is used.
534
+ output_attentions (`bool`, *optional*):
535
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
536
+ returned tensors for more detail.
537
+ use_cache (`bool`, *optional*):
538
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
539
+ (see `past_key_values`).
540
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
541
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
542
+ Indices depicting the position of the input sequence tokens in the sequence
543
+ kwargs (`dict`, *optional*):
544
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
545
+ into the model
546
+ """
547
+ residual = hidden_states
548
+
549
+ # Self Attention
550
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
551
+ hidden_states=hidden_states,
552
+ attention_mask=attention_mask,
553
+ position_ids=position_ids,
554
+ past_key_value=past_key_value,
555
+ output_attentions=output_attentions,
556
+ use_cache=use_cache,
557
+ cache_position=cache_position,
558
+ **kwargs,
559
+ )
560
+ hidden_states = self.post_attention_layernorm(hidden_states)
561
+ hidden_states = residual + hidden_states
562
+
563
+ # Fully Connected
564
+ residual = hidden_states
565
+ hidden_states = self.mlp(hidden_states)
566
+ hidden_states = self.post_feedforward_layernorm(hidden_states)
567
+ hidden_states = residual + hidden_states
568
+
569
+ outputs = (hidden_states,)
570
+ if output_attentions:
571
+ outputs += (self_attn_weights,)
572
+ if use_cache:
573
+ outputs += (present_key_value,)
574
+ return outputs
575
+
576
+
577
+ OLMO_1124_START_DOCSTRING = r"""
578
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
579
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
580
+ etc.)
581
+
582
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
583
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
584
+ and behavior.
585
+
586
+ Parameters:
587
+ config ([`Olmo1124Config`]):
588
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
589
+ load the weights associated with the model, only the configuration. Check out the
590
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
591
+ """
592
+
593
+
594
+ @add_start_docstrings(
595
+ "The bare Olmo1124 Model outputting raw hidden-states without any specific head on top.",
596
+ OLMO_1124_START_DOCSTRING,
597
+ )
598
+ class Olmo1124PreTrainedModel(PreTrainedModel):
599
+ config_class = Olmo1124Config
600
+ base_model_prefix = "model"
601
+ supports_gradient_checkpointing = True
602
+ _no_split_modules = ["Olmo1124DecoderLayer"]
603
+ _skip_keys_device_placement = ["past_key_values"]
604
+ _supports_flash_attn_2 = True
605
+ _supports_sdpa = True
606
+ _supports_cache_class = True
607
+ _supports_quantized_cache = True
608
+ _supports_static_cache = True
609
+
610
+ def _init_weights(self, module):
611
+ std = self.config.initializer_range
612
+ if isinstance(module, nn.Linear):
613
+ module.weight.data.normal_(mean=0.0, std=std)
614
+ if module.bias is not None:
615
+ module.bias.data.zero_()
616
+ elif isinstance(module, nn.Embedding):
617
+ module.weight.data.normal_(mean=0.0, std=std)
618
+ if module.padding_idx is not None:
619
+ module.weight.data[module.padding_idx].zero_()
620
+
621
+
622
+ OLMO_1124_INPUTS_DOCSTRING = r"""
623
+ Args:
624
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
625
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
626
+ it.
627
+
628
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
629
+ [`PreTrainedTokenizer.__call__`] for details.
630
+
631
+ [What are input IDs?](../glossary#input-ids)
632
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
633
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
634
+
635
+ - 1 for tokens that are **not masked**,
636
+ - 0 for tokens that are **masked**.
637
+
638
+ [What are attention masks?](../glossary#attention-mask)
639
+
640
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
641
+ [`PreTrainedTokenizer.__call__`] for details.
642
+
643
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
644
+ `past_key_values`).
645
+
646
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
647
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
648
+ information on the default strategy.
649
+
650
+ - 1 indicates the head is **not masked**,
651
+ - 0 indicates the head is **masked**.
652
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
653
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
654
+ config.n_positions - 1]`.
655
+
656
+ [What are position IDs?](../glossary#position-ids)
657
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
658
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
659
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
660
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
661
+
662
+ Two formats are allowed:
663
+ - a [`~cache_utils.Cache`] instance, see our
664
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
665
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
666
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
667
+ cache format.
668
+
669
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
670
+ legacy cache format will be returned.
671
+
672
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
673
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
674
+ of shape `(batch_size, sequence_length)`.
675
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
676
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
677
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
678
+ model's internal embedding lookup matrix.
679
+ use_cache (`bool`, *optional*):
680
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
681
+ `past_key_values`).
682
+ output_attentions (`bool`, *optional*):
683
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
684
+ tensors for more detail.
685
+ output_hidden_states (`bool`, *optional*):
686
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
687
+ more detail.
688
+ return_dict (`bool`, *optional*):
689
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
690
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
691
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
692
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
693
+ the complete sequence length.
694
+ """
695
+
696
+
697
+ @add_start_docstrings(
698
+ "The bare Olmo1124 Model outputting raw hidden-states without any specific head on top.",
699
+ OLMO_1124_START_DOCSTRING,
700
+ )
701
+ class Olmo1124Model(Olmo1124PreTrainedModel):
702
+ """
703
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo1124DecoderLayer`]
704
+
705
+ Args:
706
+ config: Olmo1124Config
707
+ """
708
+
709
+ def __init__(self, config: Olmo1124Config):
710
+ super().__init__(config)
711
+ self.padding_idx = config.pad_token_id
712
+ self.vocab_size = config.vocab_size
713
+
714
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
715
+ self.layers = nn.ModuleList(
716
+ [Olmo1124DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
717
+ )
718
+ self.norm = Olmo1124RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
719
+ self.gradient_checkpointing = False
720
+
721
+ # Initialize weights and apply final processing
722
+ self.post_init()
723
+
724
+ def get_input_embeddings(self):
725
+ return self.embed_tokens
726
+
727
+ def set_input_embeddings(self, value):
728
+ self.embed_tokens = value
729
+
730
+ @add_start_docstrings_to_model_forward(OLMO_1124_INPUTS_DOCSTRING)
731
+ # copied from transformers.models.llama.modeling_llama.LlamaModel.forward
732
+ # TODO(joao): add me back asap :)
733
+ def forward(
734
+ self,
735
+ input_ids: torch.LongTensor = None,
736
+ attention_mask: Optional[torch.Tensor] = None,
737
+ position_ids: Optional[torch.LongTensor] = None,
738
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
739
+ inputs_embeds: Optional[torch.FloatTensor] = None,
740
+ use_cache: Optional[bool] = None,
741
+ output_attentions: Optional[bool] = None,
742
+ output_hidden_states: Optional[bool] = None,
743
+ return_dict: Optional[bool] = None,
744
+ cache_position: Optional[torch.LongTensor] = None,
745
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
747
+ output_hidden_states = (
748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
749
+ )
750
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
751
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
752
+
753
+ if (input_ids is None) ^ (inputs_embeds is not None):
754
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
755
+
756
+ if self.gradient_checkpointing and self.training and use_cache:
757
+ logger.warning_once(
758
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
759
+ )
760
+ use_cache = False
761
+
762
+ if inputs_embeds is None:
763
+ inputs_embeds = self.embed_tokens(input_ids)
764
+
765
+ # kept for BC (non `Cache` `past_key_values` inputs)
766
+ return_legacy_cache = False
767
+ if use_cache and not isinstance(past_key_values, Cache):
768
+ return_legacy_cache = True
769
+ if past_key_values is None:
770
+ past_key_values = DynamicCache()
771
+ else:
772
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
773
+ logger.warning_once(
774
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
775
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
776
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
777
+ )
778
+
779
+ if cache_position is None:
780
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
781
+ cache_position = torch.arange(
782
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
783
+ )
784
+ if position_ids is None:
785
+ position_ids = cache_position.unsqueeze(0)
786
+
787
+ causal_mask = self._update_causal_mask(
788
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
789
+ )
790
+
791
+ # embed positions
792
+ hidden_states = inputs_embeds
793
+
794
+ # decoder layers
795
+ all_hidden_states = () if output_hidden_states else None
796
+ all_self_attns = () if output_attentions else None
797
+ next_decoder_cache = None
798
+
799
+ for decoder_layer in self.layers:
800
+ if output_hidden_states:
801
+ all_hidden_states += (hidden_states,)
802
+
803
+ if self.gradient_checkpointing and self.training:
804
+ layer_outputs = self._gradient_checkpointing_func(
805
+ decoder_layer.__call__,
806
+ hidden_states,
807
+ causal_mask,
808
+ position_ids,
809
+ past_key_values,
810
+ output_attentions,
811
+ use_cache,
812
+ cache_position,
813
+ )
814
+ else:
815
+ layer_outputs = decoder_layer(
816
+ hidden_states,
817
+ attention_mask=causal_mask,
818
+ position_ids=position_ids,
819
+ past_key_value=past_key_values,
820
+ output_attentions=output_attentions,
821
+ use_cache=use_cache,
822
+ cache_position=cache_position,
823
+ )
824
+
825
+ hidden_states = layer_outputs[0]
826
+
827
+ if use_cache:
828
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
829
+
830
+ if output_attentions:
831
+ all_self_attns += (layer_outputs[1],)
832
+
833
+ hidden_states = self.norm(hidden_states)
834
+
835
+ # add hidden states from the last decoder layer
836
+ if output_hidden_states:
837
+ all_hidden_states += (hidden_states,)
838
+
839
+ next_cache = next_decoder_cache if use_cache else None
840
+ if return_legacy_cache:
841
+ next_cache = next_cache.to_legacy_cache()
842
+
843
+ if not return_dict:
844
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
845
+ return BaseModelOutputWithPast(
846
+ last_hidden_state=hidden_states,
847
+ past_key_values=next_cache,
848
+ hidden_states=all_hidden_states,
849
+ attentions=all_self_attns,
850
+ )
851
+
852
+ def _update_causal_mask(
853
+ self,
854
+ attention_mask: torch.Tensor,
855
+ input_tensor: torch.Tensor,
856
+ cache_position: torch.Tensor,
857
+ past_key_values: Cache,
858
+ output_attentions: bool,
859
+ ):
860
+ if self.config._attn_implementation == "flash_attention_2":
861
+ if attention_mask is not None and 0.0 in attention_mask:
862
+ return attention_mask
863
+ return None
864
+
865
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
866
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
867
+ # to infer the attention mask.
868
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
869
+ using_static_cache = isinstance(past_key_values, StaticCache)
870
+
871
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
872
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
873
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
874
+ attention_mask,
875
+ inputs_embeds=input_tensor,
876
+ past_key_values_length=past_seen_tokens,
877
+ is_training=self.training,
878
+ ):
879
+ return None
880
+
881
+ dtype, device = input_tensor.dtype, input_tensor.device
882
+ sequence_length = input_tensor.shape[1]
883
+ if using_static_cache:
884
+ target_length = past_key_values.get_max_cache_shape()
885
+ else:
886
+ target_length = (
887
+ attention_mask.shape[-1]
888
+ if isinstance(attention_mask, torch.Tensor)
889
+ else past_seen_tokens + sequence_length + 1
890
+ )
891
+
892
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
893
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
894
+ attention_mask,
895
+ sequence_length=sequence_length,
896
+ target_length=target_length,
897
+ dtype=dtype,
898
+ device=device,
899
+ cache_position=cache_position,
900
+ batch_size=input_tensor.shape[0],
901
+ )
902
+
903
+ if (
904
+ self.config._attn_implementation == "sdpa"
905
+ and attention_mask is not None
906
+ and attention_mask.device.type == "cuda"
907
+ and not output_attentions
908
+ ):
909
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
910
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
911
+ # Details: https://github.com/pytorch/pytorch/issues/110213
912
+ min_dtype = torch.finfo(dtype).min
913
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
914
+
915
+ return causal_mask
916
+
917
+ @staticmethod
918
+ def _prepare_4d_causal_attention_mask_with_cache_position(
919
+ attention_mask: torch.Tensor,
920
+ sequence_length: int,
921
+ target_length: int,
922
+ dtype: torch.dtype,
923
+ device: torch.device,
924
+ cache_position: torch.Tensor,
925
+ batch_size: int,
926
+ **kwargs,
927
+ ):
928
+ """
929
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
930
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
931
+
932
+ Args:
933
+ attention_mask (`torch.Tensor`):
934
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
935
+ `(batch_size, 1, query_length, key_value_length)`.
936
+ sequence_length (`int`):
937
+ The sequence length being processed.
938
+ target_length (`int`):
939
+ The target length: when generating with static cache, the mask should be as long as the static cache,
940
+ to account for the 0 padding, the part of the cache that is not filled yet.
941
+ dtype (`torch.dtype`):
942
+ The dtype to use for the 4D attention mask.
943
+ device (`torch.device`):
944
+ The device to plcae the 4D attention mask on.
945
+ cache_position (`torch.Tensor`):
946
+ Indices depicting the position of the input sequence tokens in the sequence.
947
+ batch_size (`torch.Tensor`):
948
+ Batch size.
949
+ """
950
+ if attention_mask is not None and attention_mask.dim() == 4:
951
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
952
+ causal_mask = attention_mask
953
+ else:
954
+ min_dtype = torch.finfo(dtype).min
955
+ causal_mask = torch.full(
956
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
957
+ )
958
+ if sequence_length != 1:
959
+ causal_mask = torch.triu(causal_mask, diagonal=1)
960
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
961
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
962
+ if attention_mask is not None:
963
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
964
+ mask_length = attention_mask.shape[-1]
965
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
966
+ padding_mask = padding_mask == 0
967
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
968
+ padding_mask, min_dtype
969
+ )
970
+
971
+ return causal_mask
972
+
973
+
974
+ class Olmo1124ForCausalLM(Olmo1124PreTrainedModel, GenerationMixin):
975
+ _tied_weights_keys = ["lm_head.weight"]
976
+
977
+ def __init__(self, config: Olmo1124Config):
978
+ super().__init__(config)
979
+ self.model = Olmo1124Model(config)
980
+ self.vocab_size = config.vocab_size
981
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
982
+
983
+ # Initialize weights and apply final processing
984
+ self.post_init()
985
+
986
+ def get_input_embeddings(self):
987
+ return self.model.embed_tokens
988
+
989
+ def set_input_embeddings(self, value):
990
+ self.model.embed_tokens = value
991
+
992
+ def get_output_embeddings(self):
993
+ return self.lm_head
994
+
995
+ def set_output_embeddings(self, new_embeddings):
996
+ self.lm_head = new_embeddings
997
+
998
+ def set_decoder(self, decoder):
999
+ self.model = decoder
1000
+
1001
+ def get_decoder(self):
1002
+ return self.model
1003
+
1004
+ @add_start_docstrings_to_model_forward(OLMO_1124_INPUTS_DOCSTRING)
1005
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1006
+ # Ignore copy
1007
+ def forward(
1008
+ self,
1009
+ input_ids: torch.LongTensor = None,
1010
+ attention_mask: Optional[torch.Tensor] = None,
1011
+ position_ids: Optional[torch.LongTensor] = None,
1012
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1013
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1014
+ labels: Optional[torch.LongTensor] = None,
1015
+ use_cache: Optional[bool] = None,
1016
+ output_attentions: Optional[bool] = None,
1017
+ output_hidden_states: Optional[bool] = None,
1018
+ return_dict: Optional[bool] = None,
1019
+ cache_position: Optional[torch.LongTensor] = None,
1020
+ num_logits_to_keep: int = 0,
1021
+ **loss_kwargs,
1022
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1023
+ r"""
1024
+ Args:
1025
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1026
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1027
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1028
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1029
+
1030
+ num_logits_to_keep (`int`, *optional*):
1031
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1032
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1033
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1034
+
1035
+ Returns:
1036
+
1037
+ Example:
1038
+
1039
+ ```python
1040
+ >>> from transformers import AutoTokenizer, Olmo1124ForCausalLM
1041
+
1042
+ >>> model = Olmo1124ForCausalLM.from_pretrained("allenai/Olmo1124-1B-hf")
1043
+ >>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo1124-1B-hf")
1044
+
1045
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1046
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1047
+
1048
+ >>> # Generate
1049
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1050
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1051
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
1052
+ ```
1053
+ """
1054
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1055
+ output_hidden_states = (
1056
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1057
+ )
1058
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1059
+
1060
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1061
+ outputs = self.model(
1062
+ input_ids=input_ids,
1063
+ attention_mask=attention_mask,
1064
+ position_ids=position_ids,
1065
+ past_key_values=past_key_values,
1066
+ inputs_embeds=inputs_embeds,
1067
+ use_cache=use_cache,
1068
+ output_attentions=output_attentions,
1069
+ output_hidden_states=output_hidden_states,
1070
+ return_dict=return_dict,
1071
+ cache_position=cache_position,
1072
+ )
1073
+
1074
+ hidden_states = outputs[0]
1075
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1076
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1077
+
1078
+ loss = None
1079
+ if labels is not None:
1080
+ loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
1081
+
1082
+ if not return_dict:
1083
+ output = (logits,) + outputs[1:]
1084
+ return (loss,) + output if loss is not None else output
1085
+
1086
+ return CausalLMOutputWithPast(
1087
+ loss=loss,
1088
+ logits=logits,
1089
+ past_key_values=outputs.past_key_values,
1090
+ hidden_states=outputs.hidden_states,
1091
+ attentions=outputs.attentions,
1092
+ )
1093
+
1094
+
1095
+ __all__ = ["Olmo1124ForCausalLM", "Olmo1124Model", "Olmo1124PreTrainedModel"]