File size: 7,544 Bytes
461b37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: apache-2.0
datasets:
- allenai/scirepeval
language:
- en
---
# SPECTER 2.0
<!-- Provide a quick summary of what the model is/does. -->
SPECTER 2.0 is the successor to [SPECTER](allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/spp).
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
# Model Details
## Model Description
SPECTER 2.0 has been trained on over 6M triplets of scientific paper citations, which are available [here](https://huggingface.co/datasets/allenai/scirepeval/viewer/cite_prediction_new/evaluation).
Post that it is trained on all the [SciRepEval](https://huggingface.co/datasets/allenai/scirepeval) training tasks, with task format specific adapters.
Task Formats trained on:
- Classification
- Regression
- Proximity
- Adhoc Search
It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientific Document Representations](https://api.semanticscholar.org/CorpusID:254018137) and we evaluate the trained model on this benchmark as well.
- **Developed by:** Amanpreet Singh, Mike D'Arcy, Arman Cohan, Doug Downey, Sergey Feldman
- **Shared by :** Allen AI
- **Model type:** bert-base-uncased + adapters
- **License:** Apache 2.0
- **Finetuned from model [optional]:** [allenai/scibert](https://huggingface.co/allenai/scibert_scivocab_uncased).
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/allenai/SPECTER2_0] (https://github.com/allenai/SPECTER2_0)
- **Paper [optional]:** [https://api.semanticscholar.org/CorpusID:254018137](https://api.semanticscholar.org/CorpusID:254018137)
- **Demo [optional]:** [Usage] (https://github.com/allenai/SPECTER2_0/blob/main/README.md)
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
|Model|Type|Name and HF link|
|--|--|--|
|Base|Transformer|[allenai/specter_plus_plus](https://huggingface.co/allenai/specter_plus_plus)|
|Classification|Adapter|[allenai/spp_classification](https://huggingface.co/allenai/spp_classification)|
|Regression|Adapter|[allenai/spp_regression](https://huggingface.co/allenai/spp_regression)|
|Retrieval|Adapter|[allenai/spp_proximity](https://huggingface.co/allenai/spp_proximity)|
|Adhoc Query|Adapter|[allenai/spp_adhoc_query](https://huggingface.co/allenai/spp_adhoc_query)|
```python
from transformers import AutoTokenizer, AutoModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('allenai/specter_plus_plus')
#load base model
model = AutoModel.from_pretrained('allenai/specter_plus_plus')
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
model.load_adapter("allenai/spp_adhoc_query", source="hf", load_as="adhoc_query", set_active=True)
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
# concatenate title and abstract
text_batch = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = self.tokenizer(text_batch, padding=True, truncation=True,
return_tensors="pt", return_token_type_ids=False, max_length=512)
output = model(**inputs)
# take the first token in the batch as the embedding
embeddings = output.last_hidden_state[:, 0, :]
```
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
For evaluation and downstream usage, please refer to [https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md](https://github.com/allenai/scirepeval/blob/main/evaluation/INFERENCE.md).
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The base model is trained on citation links between papers and the adapters are trained on 8 large scale tasks across the four formats.
All the data is a part of SciRepEval benchmark and is available [here](https://huggingface.co/datasets/allenai/scirepeval).
The citation link are triplets in the form
```json
{"query": {"title": ..., "abstract": ...}, "pos": {"title": ..., "abstract": ...}, "neg": {"title": ..., "abstract": ...}}
```
consisting of a query paper, a positive citation and a negative which can be from the same/different field of study as the query or citation of a citation.
## Training Procedure
Please refer to the [SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677).
### Training Hyperparameters
The model is trained in two stages using [SciRepEval](https://github.com/allenai/scirepeval/blob/main/training/TRAINING.md):
- Base Model: First a base model is trained on the above citation triplets.
``` batch size = 1024, max input length = 512, learning rate = 2e-5, epochs = 2 warmup steps = 10% fp16```
- Adapters: Thereafter, task format specific adapters are trained on the SciRepEval training tasks, where 600K triplets are sampled from above and added to the training data as well.
``` batch size = 256, max input length = 512, learning rate = 1e-4, epochs = 6 warmup = 1000 steps fp16```
# Evaluation
We evaluate the model on [SciRepEval](https://github.com/allenai/scirepeval), a large scale eval benchmark for scientific embedding tasks which which has [SciDocs] as a subset.
We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedic/mdcr), a large scale citation recommendation benchmark.
|Model|SciRepEval In-Train|SciRepEval Out-of-Train|SciRepEval Avg|MDCR(MAP, Recall@5)|
|--|--|--|--|--|
|[BM-25](https://api.semanticscholar.org/CorpusID:252199740)|n/a|n/a|n/a|(33.7, 28.5)|
|[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
|[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
|[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
|[SPECTER 2.0-base](https://huggingface.co/allenai/specter_plus_plus)|56.3|58.0|69.2|(38.0, 32.4)|
|[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allen/spp)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
Please cite the following works if you end up using SPECTER 2.0:
[SPECTER paper](https://api.semanticscholar.org/CorpusID:215768677):
```bibtex
@inproceedings{specter2020cohan,
title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}},
author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
booktitle={ACL},
year={2020}
}
```
[SciRepEval paper](https://api.semanticscholar.org/CorpusID:254018137)
```bibtex
@article{Singh2022SciRepEvalAM,
title={SciRepEval: A Multi-Format Benchmark for Scientific Document Representations},
author={Amanpreet Singh and Mike D'Arcy and Arman Cohan and Doug Downey and Sergey Feldman},
journal={ArXiv},
year={2022},
volume={abs/2211.13308}
}
```
|