Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,7 @@ language:
|
|
11 |
|
12 |
SPECTER 2.0 is the successor to [SPECTER](allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/specter-2_).
|
13 |
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
|
|
|
14 |
|
15 |
# Model Details
|
16 |
|
@@ -50,13 +51,14 @@ It builds on the work done in [SciRepEval: A Multi-Format Benchmark for Scientif
|
|
50 |
|
51 |
## Direct Use
|
52 |
|
53 |
-
|Model|
|
54 |
|--|--|--|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
|
60 |
|
61 |
```python
|
62 |
from transformers import AutoTokenizer, AutoModel
|
@@ -68,7 +70,8 @@ tokenizer = AutoTokenizer.from_pretrained('allenai/specter2')
|
|
68 |
model = AutoModel.from_pretrained('allenai/specter2')
|
69 |
|
70 |
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
|
71 |
-
model.load_adapter("allenai/
|
|
|
72 |
|
73 |
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
|
74 |
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
|
@@ -83,7 +86,7 @@ output = model(**inputs)
|
|
83 |
embeddings = output.last_hidden_state[:, 0, :]
|
84 |
```
|
85 |
|
86 |
-
## Downstream Use
|
87 |
|
88 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
89 |
|
@@ -132,7 +135,6 @@ We also evaluate and establish a new SoTA on [MDCR](https://github.com/zoranmedi
|
|
132 |
|[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
|
133 |
|[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
|
134 |
|[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
|
135 |
-
|[SPECTER 2.0-base](https://huggingface.co/allenai/specter2)|56.3|58.0|69.2|(38.0, 32.4)|
|
136 |
|[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allenai/specter-2)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
|
137 |
|
138 |
Please cite the following works if you end up using SPECTER 2.0:
|
|
|
11 |
|
12 |
SPECTER 2.0 is the successor to [SPECTER](allenai/specter) and is capable of generating task specific embeddings for scientific tasks when paired with [adapters](https://huggingface.co/models?search=allenai/specter-2_).
|
13 |
Given the combination of title and abstract of a scientific paper or a short texual query, the model can be used to generate effective embeddings to be used in downstream applications.
|
14 |
+
**Note:** To get the best performance on a downstream task type please load the associated adapter with the base model as [below]()
|
15 |
|
16 |
# Model Details
|
17 |
|
|
|
51 |
|
52 |
## Direct Use
|
53 |
|
54 |
+
|Model|Name and HF link|Description|
|
55 |
|--|--|--|
|
56 |
+
|Retrieval*|[allenai/specter2_proximity](https://huggingface.co/allenai/specter2_proximity)|Encode papers as queries and candidates eg. Link Prediction, Nearest Neighbor Search|
|
57 |
+
|Adhoc Query|[allenai/specter2_adhoc_query](https://huggingface.co/allenai/specter2_adhoc_query)|Encode short raw text queries for search tasks. (Candidate papers can be encoded with proximity)|
|
58 |
+
|Classification|[allenai/specter2_classification](https://huggingface.co/allenai/specter2_classification)|Encode papers to feed into linear classifiers as features|
|
59 |
+
|Regression|[allenai/specter2_regression](https://huggingface.co/allenai/specter2_regression)|Encode papers to feed into linear regressors as features|
|
60 |
+
|
61 |
+
*Retrieval model should suffice for downstream task types not mentioned above
|
62 |
|
63 |
```python
|
64 |
from transformers import AutoTokenizer, AutoModel
|
|
|
70 |
model = AutoModel.from_pretrained('allenai/specter2')
|
71 |
|
72 |
#load the adapter(s) as per the required task, provide an identifier for the adapter in load_as argument and activate it
|
73 |
+
model.load_adapter("allenai/specter2_proximity", source="hf", load_as="proximity", set_active=True)
|
74 |
+
#other possibilities: allenai/specter2_<classification|regression|adhoc_query>
|
75 |
|
76 |
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
|
77 |
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
|
|
|
86 |
embeddings = output.last_hidden_state[:, 0, :]
|
87 |
```
|
88 |
|
89 |
+
## Downstream Use
|
90 |
|
91 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
92 |
|
|
|
135 |
|[SPECTER](https://huggingface.co/allenai/specter)|54.7|57.4|68.0|(30.6, 25.5)|
|
136 |
|[SciNCL](https://huggingface.co/malteos/scincl)|55.6|57.8|69.0|(32.6, 27.3)|
|
137 |
|[SciRepEval-Adapters](https://huggingface.co/models?search=scirepeval)|61.9|59.0|70.9|(35.3, 29.6)|
|
|
|
138 |
|[SPECTER 2.0-Adapters](https://huggingface.co/models?search=allenai/specter-2)|**62.3**|**59.2**|**71.2**|**(38.4, 33.0)**|
|
139 |
|
140 |
Please cite the following works if you end up using SPECTER 2.0:
|