Text Generation
Transformers
PyTorch
English
llama
conversational
text-generation-inference
Inference Endpoints
hamishivi commited on
Commit
94e4a37
1 Parent(s): 1f35a2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -22,7 +22,7 @@ This model is trained on a 60k random subsample of the Nectar dataset using PPO.
22
  We used a 13B RM trained on the 60k Nectar split, and then re-used the same prompts during PPO training.
23
 
24
  For more details, read the paper:
25
- [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://link.todo).
26
 
27
 
28
  ## .Model description
@@ -83,6 +83,7 @@ If you find Tulu 2.5 is useful in your work, please cite it with:
83
  title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
84
  author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
85
  year={2024},
 
86
  archivePrefix={arXiv},
87
  primaryClass={cs.CL}
88
  }
 
22
  We used a 13B RM trained on the 60k Nectar split, and then re-used the same prompts during PPO training.
23
 
24
  For more details, read the paper:
25
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).
26
 
27
 
28
  ## .Model description
 
83
  title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
84
  author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
85
  year={2024},
86
+ eprint={2406.09279},
87
  archivePrefix={arXiv},
88
  primaryClass={cs.CL}
89
  }