Create README.md
Browse filesSimply copying the same information as used in other CamemBERT model
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
---
|
4 |
+
|
5 |
+
# CamemBERT: a Tasty French Language Model
|
6 |
+
|
7 |
+
## Introduction
|
8 |
+
|
9 |
+
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
|
10 |
+
|
11 |
+
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
|
12 |
+
|
13 |
+
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
|
14 |
+
|
15 |
+
## Pre-trained models
|
16 |
+
|
17 |
+
| Model | #params | Arch. | Training data |
|
18 |
+
|--------------------------------|--------------------------------|-------|-----------------------------------|
|
19 |
+
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
|
20 |
+
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) |
|
21 |
+
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
|
22 |
+
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
|
23 |
+
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
|
24 |
+
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
|
25 |
+
|
26 |
+
## How to use CamemBERT with HuggingFace
|
27 |
+
|
28 |
+
##### Load CamemBERT and its sub-word tokenizer :
|
29 |
+
```python
|
30 |
+
from transformers import CamembertModel, CamembertTokenizer
|
31 |
+
|
32 |
+
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
|
33 |
+
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb")
|
34 |
+
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb")
|
35 |
+
|
36 |
+
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
37 |
+
|
38 |
+
```
|
39 |
+
|
40 |
+
##### Filling masks using pipeline
|
41 |
+
```python
|
42 |
+
from transformers import pipeline
|
43 |
+
|
44 |
+
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb")
|
45 |
+
results = camembert_fill_mask("Le camembert est un fromage de <mask>!")
|
46 |
+
# results
|
47 |
+
#[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370},
|
48 |
+
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616},
|
49 |
+
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364},
|
50 |
+
# {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236},
|
51 |
+
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}]
|
52 |
+
```
|
53 |
+
|
54 |
+
##### Extract contextual embedding features from Camembert output
|
55 |
+
```python
|
56 |
+
import torch
|
57 |
+
# Tokenize in sub-words with SentencePiece
|
58 |
+
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
|
59 |
+
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
|
60 |
+
|
61 |
+
# 1-hot encode and add special starting and end tokens
|
62 |
+
encoded_sentence = tokenizer.encode(tokenized_sentence)
|
63 |
+
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6]
|
64 |
+
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
|
65 |
+
|
66 |
+
# Feed tokens to Camembert as a torch tensor (batch dim 1)
|
67 |
+
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
|
68 |
+
embeddings, _ = camembert(encoded_sentence)
|
69 |
+
# embeddings.detach()
|
70 |
+
# embeddings.size torch.Size([1, 10, 768])
|
71 |
+
#tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302],
|
72 |
+
# [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802],
|
73 |
+
# [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677],
|
74 |
+
# ...,
|
75 |
+
```
|
76 |
+
|
77 |
+
##### Extract contextual embedding features from all Camembert layers
|
78 |
+
```python
|
79 |
+
from transformers import CamembertConfig
|
80 |
+
# (Need to reload the model with new config)
|
81 |
+
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True)
|
82 |
+
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config)
|
83 |
+
|
84 |
+
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
|
85 |
+
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
|
86 |
+
all_layer_embeddings[5]
|
87 |
+
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
|
88 |
+
#tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095],
|
89 |
+
# [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914],
|
90 |
+
# [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061],
|
91 |
+
# ...,
|
92 |
+
```
|
93 |
+
|
94 |
+
|
95 |
+
## Authors
|
96 |
+
|
97 |
+
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
98 |
+
|
99 |
+
|
100 |
+
## Citation
|
101 |
+
If you use our work, please cite:
|
102 |
+
|
103 |
+
```bibtex
|
104 |
+
@inproceedings{martin2020camembert,
|
105 |
+
title={CamemBERT: a Tasty French Language Model},
|
106 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
107 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
108 |
+
year={2020}
|
109 |
+
}
|
110 |
+
```
|