Use the model card from the authors instead
Browse files
README.md
CHANGED
@@ -7,58 +7,15 @@ datasets:
|
|
7 |
|
8 |
# CamemBERT: a Tasty French Language Model
|
9 |
|
10 |
-
##
|
11 |
-
- [Model Details](#model-details)
|
12 |
-
- [Uses](#uses)
|
13 |
-
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
14 |
-
- [Training](#training)
|
15 |
-
- [Evaluation](#evaluation)
|
16 |
-
- [Citation Information](#citation-information)
|
17 |
-
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
18 |
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Model Description:**
|
22 |
-
CamemBERT is a state-of-the-art language model for French based on the RoBERTa model.
|
23 |
-
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
|
24 |
-
- **Developed by:** Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
25 |
-
- **Model Type:** Fill-Mask
|
26 |
-
- **Language(s):** French
|
27 |
-
- **License:** MIT
|
28 |
-
- **Parent Model:** See the [RoBERTa base model](https://huggingface.co/roberta-base) for more information about the RoBERTa base model.
|
29 |
-
- **Resources for more information:**
|
30 |
-
- [Research Paper](https://arxiv.org/abs/1911.03894)
|
31 |
-
- [Camembert Website](https://camembert-model.fr/)
|
32 |
-
|
33 |
-
|
34 |
-
## Uses
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
## Risks, Limitations and Biases
|
42 |
-
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
43 |
-
|
44 |
-
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
45 |
-
|
46 |
-
This model was pretrained on a subcorpus of OSCAR multilingual corpus. Some of the limitations and risks associated with the OSCAR dataset, which are further detailed in the [OSCAR dataset card](https://huggingface.co/datasets/oscar), include the following:
|
47 |
-
|
48 |
-
> The quality of some OSCAR sub-corpora might be lower than expected, specifically for the lowest-resource languages.
|
49 |
-
|
50 |
-
> Constructed from Common Crawl, Personal and sensitive information might be present.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
## Training
|
55 |
-
|
56 |
-
|
57 |
-
#### Training Data
|
58 |
-
OSCAR or Open Super-large Crawled Aggregated coRpus is a multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the Ungoliant architecture.
|
59 |
-
|
60 |
-
|
61 |
-
#### Training Procedure
|
62 |
|
63 |
| Model | #params | Arch. | Training data |
|
64 |
|--------------------------------|--------------------------------|-------|-----------------------------------|
|
@@ -69,33 +26,15 @@ OSCAR or Open Super-large Crawled Aggregated coRpus is a multilingual corpus obt
|
|
69 |
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
|
70 |
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
|
71 |
|
72 |
-
##
|
73 |
-
|
74 |
-
|
75 |
-
The model developers evaluated CamemBERT using four different downstream tasks for French: part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER) and natural language inference (NLI).
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
## Citation Information
|
80 |
-
|
81 |
-
```bibtex
|
82 |
-
@inproceedings{martin2020camembert,
|
83 |
-
title={CamemBERT: a Tasty French Language Model},
|
84 |
-
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
85 |
-
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
86 |
-
year={2020}
|
87 |
-
}
|
88 |
-
```
|
89 |
-
|
90 |
-
## How to Get Started With the Model
|
91 |
|
92 |
##### Load CamemBERT and its sub-word tokenizer :
|
93 |
```python
|
94 |
from transformers import CamembertModel, CamembertTokenizer
|
95 |
|
96 |
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
|
97 |
-
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
|
98 |
-
camembert = CamembertModel.from_pretrained("camembert-base")
|
99 |
|
100 |
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
101 |
|
@@ -105,15 +44,14 @@ camembert.eval() # disable dropout (or leave in train mode to finetune)
|
|
105 |
```python
|
106 |
from transformers import pipeline
|
107 |
|
108 |
-
camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base")
|
109 |
-
results = camembert_fill_mask("Le camembert est <mask
|
110 |
# results
|
111 |
-
#[{'sequence': '<s> Le camembert est
|
112 |
-
#
|
113 |
-
#
|
114 |
-
# {'sequence': '<s> Le camembert est
|
115 |
-
#
|
116 |
-
|
117 |
```
|
118 |
|
119 |
##### Extract contextual embedding features from Camembert output
|
@@ -125,7 +63,7 @@ tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
|
|
125 |
|
126 |
# 1-hot encode and add special starting and end tokens
|
127 |
encoded_sentence = tokenizer.encode(tokenized_sentence)
|
128 |
-
# [5,
|
129 |
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
|
130 |
|
131 |
# Feed tokens to Camembert as a torch tensor (batch dim 1)
|
@@ -133,9 +71,9 @@ encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
|
|
133 |
embeddings, _ = camembert(encoded_sentence)
|
134 |
# embeddings.detach()
|
135 |
# embeddings.size torch.Size([1, 10, 768])
|
136 |
-
#
|
137 |
-
# [ 0.
|
138 |
-
# [-0.
|
139 |
# ...,
|
140 |
```
|
141 |
|
@@ -143,16 +81,33 @@ embeddings, _ = camembert(encoded_sentence)
|
|
143 |
```python
|
144 |
from transformers import CamembertConfig
|
145 |
# (Need to reload the model with new config)
|
146 |
-
config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True)
|
147 |
-
camembert = CamembertModel.from_pretrained("camembert-base", config=config)
|
148 |
|
149 |
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
|
150 |
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
|
151 |
all_layer_embeddings[5]
|
152 |
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
|
153 |
-
#tensor([[[-0.
|
154 |
-
# [
|
155 |
-
# [
|
156 |
# ...,
|
157 |
```
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# CamemBERT: a Tasty French Language Model
|
9 |
|
10 |
+
## Introduction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
|
13 |
|
14 |
+
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
|
17 |
|
18 |
+
## Pre-trained models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
| Model | #params | Arch. | Training data |
|
21 |
|--------------------------------|--------------------------------|-------|-----------------------------------|
|
|
|
26 |
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
|
27 |
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
|
28 |
|
29 |
+
## How to use CamemBERT with HuggingFace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
##### Load CamemBERT and its sub-word tokenizer :
|
32 |
```python
|
33 |
from transformers import CamembertModel, CamembertTokenizer
|
34 |
|
35 |
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
|
36 |
+
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb")
|
37 |
+
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb")
|
38 |
|
39 |
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
40 |
|
|
|
44 |
```python
|
45 |
from transformers import pipeline
|
46 |
|
47 |
+
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb")
|
48 |
+
results = camembert_fill_mask("Le camembert est un fromage de <mask>!")
|
49 |
# results
|
50 |
+
#[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370},
|
51 |
+
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616},
|
52 |
+
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364},
|
53 |
+
# {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236},
|
54 |
+
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}]
|
|
|
55 |
```
|
56 |
|
57 |
##### Extract contextual embedding features from Camembert output
|
|
|
63 |
|
64 |
# 1-hot encode and add special starting and end tokens
|
65 |
encoded_sentence = tokenizer.encode(tokenized_sentence)
|
66 |
+
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6]
|
67 |
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
|
68 |
|
69 |
# Feed tokens to Camembert as a torch tensor (batch dim 1)
|
|
|
71 |
embeddings, _ = camembert(encoded_sentence)
|
72 |
# embeddings.detach()
|
73 |
# embeddings.size torch.Size([1, 10, 768])
|
74 |
+
#tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302],
|
75 |
+
# [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802],
|
76 |
+
# [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677],
|
77 |
# ...,
|
78 |
```
|
79 |
|
|
|
81 |
```python
|
82 |
from transformers import CamembertConfig
|
83 |
# (Need to reload the model with new config)
|
84 |
+
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True)
|
85 |
+
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config)
|
86 |
|
87 |
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
|
88 |
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
|
89 |
all_layer_embeddings[5]
|
90 |
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
|
91 |
+
#tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095],
|
92 |
+
# [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914],
|
93 |
+
# [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061],
|
94 |
# ...,
|
95 |
```
|
96 |
|
97 |
+
|
98 |
+
## Authors
|
99 |
+
|
100 |
+
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
101 |
+
|
102 |
+
|
103 |
+
## Citation
|
104 |
+
If you use our work, please cite:
|
105 |
+
|
106 |
+
```bibtex
|
107 |
+
@inproceedings{martin2020camembert,
|
108 |
+
title={CamemBERT: a Tasty French Language Model},
|
109 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
110 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
111 |
+
year={2020}
|
112 |
+
}
|
113 |
+
```
|