Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,60 @@ datasets:
|
|
17 |
|
18 |
- **Finetuned from model :** alnrg2arg/blockchainlabs_7B_merged_test2_4
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
Benchmark scores
|
21 |
|
22 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
@@ -49,51 +103,6 @@ Benchmark scores
|
|
49 |
|-----|------:|----------|-----:|-----------|-----:|---|-----:|
|
50 |
|gsm8k| 2|get-answer| 5|exact_match|0.7468|± | 0.012|
|
51 |
|
52 |
-
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr|
|
53 |
-
|-----------------|-------|------|-----:|-----------|------:|---|-----:|
|
54 |
-
|truthfulqa |N/A |none | 0|bleu_max |16.3339|± |0.3451|
|
55 |
-
| | |none | 0|bleu_acc | 0.4982|± |0.0003|
|
56 |
-
| | |none | 0|bleu_diff | 1.2909|± |0.1919|
|
57 |
-
| | |none | 0|rouge1_max |41.6927|± |0.5469|
|
58 |
-
| | |none | 0|rouge1_acc | 0.5300|± |0.0003|
|
59 |
-
| | |none | 0|rouge1_diff| 1.4267|± |0.3796|
|
60 |
-
| | |none | 0|rouge2_max |27.3013|± |0.6213|
|
61 |
-
| | |none | 0|rouge2_acc | 0.4272|± |0.0003|
|
62 |
-
| | |none | 0|rouge2_diff| 1.5314|± |0.4765|
|
63 |
-
| | |none | 0|rougeL_max |37.8174|± |0.5443|
|
64 |
-
| | |none | 0|rougeL_acc | 0.4859|± |0.0003|
|
65 |
-
| | |none | 0|rougeL_diff| 1.2621|± |0.3898|
|
66 |
-
| | |none | 0|acc | 0.6613|± |0.0435|
|
67 |
-
| - truthfulqa_gen| 3|none | 0|bleu_max |16.3339|± |0.5874|
|
68 |
-
| | |none | 0|bleu_acc | 0.4982|± |0.0175|
|
69 |
-
| | |none | 0|bleu_diff | 1.2909|± |0.4381|
|
70 |
-
| | |none | 0|rouge1_max |41.6927|± |0.7396|
|
71 |
-
| | |none | 0|rouge1_acc | 0.5300|± |0.0175|
|
72 |
-
| | |none | 0|rouge1_diff| 1.4267|± |0.6161|
|
73 |
-
| | |none | 0|rouge2_max |27.3013|± |0.7882|
|
74 |
-
| | |none | 0|rouge2_acc | 0.4272|± |0.0173|
|
75 |
-
| | |none | 0|rouge2_diff| 1.5314|± |0.6903|
|
76 |
-
| | |none | 0|rougeL_max |37.8174|± |0.7378|
|
77 |
-
| | |none | 0|rougeL_acc | 0.4859|± |0.0175|
|
78 |
-
| | |none | 0|rougeL_diff| 1.2621|± |0.6243|
|
79 |
-
| - truthfulqa_mc1| 2|none | 0|acc | 0.5753|± |0.0173|
|
80 |
-
| - truthfulqa_mc2| 2|none | 0|acc | 0.7043|± |0.0150|
|
81 |
-
|
82 |
-
| Groups |Version|Filter|n-shot| Metric | Value | |Stderr|
|
83 |
-
|----------|-------|------|-----:|-----------|------:|---|-----:|
|
84 |
-
|truthfulqa|N/A |none | 0|bleu_max |16.3339|± |0.3451|
|
85 |
-
| | |none | 0|bleu_acc | 0.4982|± |0.0003|
|
86 |
-
| | |none | 0|bleu_diff | 1.2909|± |0.1919|
|
87 |
-
| | |none | 0|rouge1_max |41.6927|± |0.5469|
|
88 |
-
| | |none | 0|rouge1_acc | 0.5300|± |0.0003|
|
89 |
-
| | |none | 0|rouge1_diff| 1.4267|± |0.3796|
|
90 |
-
| | |none | 0|rouge2_max |27.3013|± |0.6213|
|
91 |
-
| | |none | 0|rouge2_acc | 0.4272|± |0.0003|
|
92 |
-
| | |none | 0|rouge2_diff| 1.5314|± |0.4765|
|
93 |
-
| | |none | 0|rougeL_max |37.8174|± |0.5443|
|
94 |
-
| | |none | 0|rougeL_acc | 0.4859|± |0.0003|
|
95 |
-
| | |none | 0|rougeL_diff| 1.2621|± |0.3898|
|
96 |
-
| | |none | 0|acc | 0.6613|± |0.0435|
|
97 |
|
98 |
|
99 |
Average 75.94
|
|
|
17 |
|
18 |
- **Finetuned from model :** alnrg2arg/blockchainlabs_7B_merged_test2_4
|
19 |
|
20 |
+
This is a SFT version of the model from blockchainlab test 2.4 - alnrg2arg/blockchainlabs_7B_merged_test2_4.
|
21 |
+
|
22 |
+
The project is running to make a small LLM for a on-device purpose.
|
23 |
+
|
24 |
+
Overall pipeline for this iteration is
|
25 |
+
|
26 |
+
1.Merging to make a base model (7B)
|
27 |
+
2.Prune the model to reduce the parameter (50% sparcity)
|
28 |
+
3.For recovery phase of the pruning, the DPO is chosen.
|
29 |
+
|
30 |
+
This model which is not pruned is intended to compare with the pruned model.
|
31 |
+
|
32 |
+
DPO consists of two parts : SFT and DPO - Now this model is the intermediate format (SFT)
|
33 |
+
This model can also be compared to the DPO version of the model.
|
34 |
+
|
35 |
+
|
36 |
+
This is the code and parameters I chose for this model(SFT).
|
37 |
+
|
38 |
+
```
|
39 |
+
from transformers import TrainingArguments
|
40 |
+
from trl import SFTTrainer
|
41 |
+
from datasets import load_dataset
|
42 |
+
from unsloth import FastLanguageModel, FastMistralModel
|
43 |
+
|
44 |
+
|
45 |
+
max_seq_length = 2048 # Supports automatic RoPE Scaling, so choose any number
|
46 |
+
|
47 |
+
# Load model
|
48 |
+
model, tokenizer = FastMistralModel.from_pretrained(
|
49 |
+
model_name = "alnrg2arg/blockchainlabs_7B_merged_test2_4,
|
50 |
+
max_seq_length = max_seq_length,
|
51 |
+
dtype = None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
52 |
+
load_in_4bit = True, # Use 4bit quantization to reduce memory usage. Can be False
|
53 |
+
#device_map = "balanced"
|
54 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
55 |
+
)
|
56 |
+
|
57 |
+
model = FastMistralModel.get_peft_model(
|
58 |
+
model,
|
59 |
+
r = 16,
|
60 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
61 |
+
"gate_proj", "up_proj", "down_proj",],
|
62 |
+
lora_alpha = 16,
|
63 |
+
lora_dropout = 0, # Dropout = 0 is currently optimized
|
64 |
+
bias = "none", # Bias = "none" is currently optimized
|
65 |
+
use_gradient_checkpointing = True,
|
66 |
+
random_state = 3407,
|
67 |
+
max_seq_length = max_seq_length,
|
68 |
+
)
|
69 |
+
```
|
70 |
+
|
71 |
+
The code and parameters are borrowed from https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing
|
72 |
+
|
73 |
+
|
74 |
Benchmark scores
|
75 |
|
76 |
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
|
|
103 |
|-----|------:|----------|-----:|-----------|-----:|---|-----:|
|
104 |
|gsm8k| 2|get-answer| 5|exact_match|0.7468|± | 0.012|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
Average 75.94
|