File size: 1,586 Bytes
83f1ed9
debc19d
 
 
 
 
 
 
83f1ed9
 
debc19d
 
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
83f1ed9
debc19d
 
 
 
 
 
 
 
 
 
 
83f1ed9
debc19d
83f1ed9
297589f
 
 
83f1ed9
 
debc19d
83f1ed9
debc19d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: bigscience-bloom-rail-1.0
base_model: alonzogarbanzo/Bloom-1b7-glue-mrpc-Cont-IT-Step3
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b7-dialogsum-Cont-IT-Step4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bloom-1b7-dialogsum-Cont-IT-Step4

This model is a fine-tuned version of [alonzogarbanzo/Bloom-1b7-glue-mrpc-Cont-IT-Step3](https://huggingface.co/alonzogarbanzo/Bloom-1b7-glue-mrpc-Cont-IT-Step3) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

Final results: {'loss': 0.0255, 'grad_norm': 0.49388185143470764, 'learning_rate': 4.0000000000000003e-07, 'epoch': 10.0}

Average results: {'train_runtime': 1192.3888, 'train_samples_per_second': 1.677, 'train_steps_per_second': 0.419, 'train_loss': 0.5184975152909755, 'epoch': 10.0}


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2