File size: 2,167 Bytes
b0bc946
ff31cfd
 
 
 
 
 
 
b0bc946
 
ff31cfd
 
b0bc946
ff31cfd
b0bc946
ff31cfd
b0bc946
ff31cfd
b0bc946
ff31cfd
b0bc946
ff31cfd
b0bc946
ff31cfd
b0bc946
ff31cfd
b0bc946
61e6329
b0bc946
ff31cfd
b0bc946
61e6329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff31cfd
b0bc946
ff31cfd
 
 
 
 
 
 
 
 
 
 
b0bc946
ff31cfd
b0bc946
61e6329
b0bc946
61e6329
b0bc946
ff31cfd
b0bc946
ff31cfd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloom-1b7
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b7-glue-mrpc-IT-baseline
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Bloom-1b7-glue-mrpc-IT-baseline

This model is a fine-tuned version of [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

Instruction Tuned on the glue-mrpc task here: https://huggingface.co/datasets/adambjorn/UnrelatedForgettingOverhead/viewer/glue-mrpc

## Training procedure

Given a set of prompts:

``` python
prompts = [
        "Determine if the following sentences are equivalent: Sentence 1: {sentence1} Sentence 2: {sentence2}. Answer: ",
        "Are these sentences saying the same thing? First: {sentence1} Second: {sentence2}. Response: ",
        "Check sentence equivalence: \"{sentence1}\" versus \"{sentence2}\". Result: ",
    ]
```

Concatenate the prompts, the two sentences and the label as so:

```python
input_text = prompt.format(sentence1=sentence1, sentence2=sentence2)    
input_text += " " + responses[label]
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

Final results: {'loss': 0.0949, 'grad_norm': 5.0146379470825195, 'learning_rate': 6.000000000000001e-07, 'epoch': 10.0}

Average results: {'train_runtime': 363.2148, 'train_samples_per_second': 5.506, 'train_steps_per_second': 1.377, 'train_loss': 0.4939311617612839, 'epoch': 10.0}

### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2