File size: 2,167 Bytes
b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 61e6329 b0bc946 ff31cfd b0bc946 61e6329 ff31cfd b0bc946 ff31cfd b0bc946 ff31cfd b0bc946 61e6329 b0bc946 61e6329 b0bc946 ff31cfd b0bc946 ff31cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloom-1b7
tags:
- generated_from_trainer
model-index:
- name: Bloom-1b7-glue-mrpc-IT-baseline
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bloom-1b7-glue-mrpc-IT-baseline
This model is a fine-tuned version of [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Instruction Tuned on the glue-mrpc task here: https://huggingface.co/datasets/adambjorn/UnrelatedForgettingOverhead/viewer/glue-mrpc
## Training procedure
Given a set of prompts:
``` python
prompts = [
"Determine if the following sentences are equivalent: Sentence 1: {sentence1} Sentence 2: {sentence2}. Answer: ",
"Are these sentences saying the same thing? First: {sentence1} Second: {sentence2}. Response: ",
"Check sentence equivalence: \"{sentence1}\" versus \"{sentence2}\". Result: ",
]
```
Concatenate the prompts, the two sentences and the label as so:
```python
input_text = prompt.format(sentence1=sentence1, sentence2=sentence2)
input_text += " " + responses[label]
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
Final results: {'loss': 0.0949, 'grad_norm': 5.0146379470825195, 'learning_rate': 6.000000000000001e-07, 'epoch': 10.0}
Average results: {'train_runtime': 363.2148, 'train_samples_per_second': 5.506, 'train_steps_per_second': 1.377, 'train_loss': 0.4939311617612839, 'epoch': 10.0}
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|