alpcansoydas commited on
Commit
21b5532
·
verified ·
1 Parent(s): fb1f7c7

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:25052
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: HAZIR TEMELLI KAFES kule 30m 130x3.5
12
+ sentences:
13
+ - Electrical cable and accessories
14
+ - Building construction machinery and accessories
15
+ - Mounting Hardware
16
+ - source_sentence: GRUP ICI TELESALES BIREYSEL SATIS GIDERLERI
17
+ sentences:
18
+ - Chassis components
19
+ - Computers
20
+ - Telecommunication Services
21
+ - source_sentence: 02A5C02_SERI_NUMARALI_VARLIK_ICIN_MEMORY_UPGRADE
22
+ sentences:
23
+ - Chassis components
24
+ - Building construction machinery and accessories
25
+ - Computers
26
+ - source_sentence: anten 885 to 975 mhz
27
+ sentences:
28
+ - Chassis components
29
+ - Media storage devices
30
+ - Circuit assemblies and radio frequency RF components
31
+ - source_sentence: LG 35'' 35WN75C QHD UltraWide Curved Monitor
32
+ sentences:
33
+ - Computer displays
34
+ - Computers
35
+ - Personal communication devices
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: Unknown
49
+ type: unknown
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: .nan
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: .nan
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
68
+ - **Maximum Sequence Length:** 128 tokens
69
+ - **Output Dimensionality:** 384 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("alpcansoydas/product-model-07.01.25-total45class-ifhavemorethan100sampleperclass-0.73acc")
106
+ # Run inference
107
+ sentences = [
108
+ "LG 35'' 35WN75C QHD UltraWide Curved Monitor",
109
+ 'Computer displays',
110
+ 'Computers',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 384]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Semantic Similarity
151
+
152
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
153
+
154
+ | Metric | Value |
155
+ |:--------------------|:--------|
156
+ | pearson_cosine | nan |
157
+ | **spearman_cosine** | **nan** |
158
+
159
+ <!--
160
+ ## Bias, Risks and Limitations
161
+
162
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
163
+ -->
164
+
165
+ <!--
166
+ ### Recommendations
167
+
168
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
169
+ -->
170
+
171
+ ## Training Details
172
+
173
+ ### Training Dataset
174
+
175
+ #### Unnamed Dataset
176
+
177
+
178
+ * Size: 25,052 training samples
179
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence1 | sentence2 |
182
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
183
+ | type | string | string |
184
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.38 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.51 tokens</li><li>max: 15 tokens</li></ul> |
185
+ * Samples:
186
+ | sentence1 | sentence2 |
187
+ |:---------------------------------------------------|:--------------------------------------------------------------------------|
188
+ | <code>Lenovo ThinkPad 13 Business Ultrabook</code> | <code>Computers</code> |
189
+ | <code>Turuncu Renk Elektronik İsaretleyici</code> | <code>Electronic component parts and raw materials and accessories</code> |
190
+ | <code>GALATA BAKIM HIZMETI</code> | <code>Business function specific software</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Evaluation Dataset
200
+
201
+ #### Unnamed Dataset
202
+
203
+
204
+ * Size: 3,132 evaluation samples
205
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
206
+ * Approximate statistics based on the first 1000 samples:
207
+ | | sentence1 | sentence2 |
208
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
209
+ | type | string | string |
210
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.88 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.61 tokens</li><li>max: 15 tokens</li></ul> |
211
+ * Samples:
212
+ | sentence1 | sentence2 |
213
+ |:----------------------------------------------------------|:-------------------------------------------------------------|
214
+ | <code>yapay çam ağacı dalı- 1m boyunda</code> | <code>Building construction machinery and accessories</code> |
215
+ | <code>Apple MacBookAir 13 inch M3 MXCR3TU/A (2024)</code> | <code>Computers</code> |
216
+ | <code>40x200x40x1.00 mm Kapaklı kablo kanalı</code> | <code>Electrical cable and accessories</code> |
217
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
218
+ ```json
219
+ {
220
+ "scale": 20.0,
221
+ "similarity_fct": "cos_sim"
222
+ }
223
+ ```
224
+
225
+ ### Training Hyperparameters
226
+ #### Non-Default Hyperparameters
227
+
228
+ - `eval_strategy`: steps
229
+ - `per_device_train_batch_size`: 32
230
+ - `per_device_eval_batch_size`: 32
231
+ - `warmup_ratio`: 0.1
232
+ - `fp16`: True
233
+
234
+ #### All Hyperparameters
235
+ <details><summary>Click to expand</summary>
236
+
237
+ - `overwrite_output_dir`: False
238
+ - `do_predict`: False
239
+ - `eval_strategy`: steps
240
+ - `prediction_loss_only`: True
241
+ - `per_device_train_batch_size`: 32
242
+ - `per_device_eval_batch_size`: 32
243
+ - `per_gpu_train_batch_size`: None
244
+ - `per_gpu_eval_batch_size`: None
245
+ - `gradient_accumulation_steps`: 1
246
+ - `eval_accumulation_steps`: None
247
+ - `torch_empty_cache_steps`: None
248
+ - `learning_rate`: 5e-05
249
+ - `weight_decay`: 0.0
250
+ - `adam_beta1`: 0.9
251
+ - `adam_beta2`: 0.999
252
+ - `adam_epsilon`: 1e-08
253
+ - `max_grad_norm`: 1.0
254
+ - `num_train_epochs`: 3
255
+ - `max_steps`: -1
256
+ - `lr_scheduler_type`: linear
257
+ - `lr_scheduler_kwargs`: {}
258
+ - `warmup_ratio`: 0.1
259
+ - `warmup_steps`: 0
260
+ - `log_level`: passive
261
+ - `log_level_replica`: warning
262
+ - `log_on_each_node`: True
263
+ - `logging_nan_inf_filter`: True
264
+ - `save_safetensors`: True
265
+ - `save_on_each_node`: False
266
+ - `save_only_model`: False
267
+ - `restore_callback_states_from_checkpoint`: False
268
+ - `no_cuda`: False
269
+ - `use_cpu`: False
270
+ - `use_mps_device`: False
271
+ - `seed`: 42
272
+ - `data_seed`: None
273
+ - `jit_mode_eval`: False
274
+ - `use_ipex`: False
275
+ - `bf16`: False
276
+ - `fp16`: True
277
+ - `fp16_opt_level`: O1
278
+ - `half_precision_backend`: auto
279
+ - `bf16_full_eval`: False
280
+ - `fp16_full_eval`: False
281
+ - `tf32`: None
282
+ - `local_rank`: 0
283
+ - `ddp_backend`: None
284
+ - `tpu_num_cores`: None
285
+ - `tpu_metrics_debug`: False
286
+ - `debug`: []
287
+ - `dataloader_drop_last`: False
288
+ - `dataloader_num_workers`: 0
289
+ - `dataloader_prefetch_factor`: None
290
+ - `past_index`: -1
291
+ - `disable_tqdm`: False
292
+ - `remove_unused_columns`: True
293
+ - `label_names`: None
294
+ - `load_best_model_at_end`: False
295
+ - `ignore_data_skip`: False
296
+ - `fsdp`: []
297
+ - `fsdp_min_num_params`: 0
298
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
299
+ - `fsdp_transformer_layer_cls_to_wrap`: None
300
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
301
+ - `deepspeed`: None
302
+ - `label_smoothing_factor`: 0.0
303
+ - `optim`: adamw_torch
304
+ - `optim_args`: None
305
+ - `adafactor`: False
306
+ - `group_by_length`: False
307
+ - `length_column_name`: length
308
+ - `ddp_find_unused_parameters`: None
309
+ - `ddp_bucket_cap_mb`: None
310
+ - `ddp_broadcast_buffers`: False
311
+ - `dataloader_pin_memory`: True
312
+ - `dataloader_persistent_workers`: False
313
+ - `skip_memory_metrics`: True
314
+ - `use_legacy_prediction_loop`: False
315
+ - `push_to_hub`: False
316
+ - `resume_from_checkpoint`: None
317
+ - `hub_model_id`: None
318
+ - `hub_strategy`: every_save
319
+ - `hub_private_repo`: None
320
+ - `hub_always_push`: False
321
+ - `gradient_checkpointing`: False
322
+ - `gradient_checkpointing_kwargs`: None
323
+ - `include_inputs_for_metrics`: False
324
+ - `include_for_metrics`: []
325
+ - `eval_do_concat_batches`: True
326
+ - `fp16_backend`: auto
327
+ - `push_to_hub_model_id`: None
328
+ - `push_to_hub_organization`: None
329
+ - `mp_parameters`:
330
+ - `auto_find_batch_size`: False
331
+ - `full_determinism`: False
332
+ - `torchdynamo`: None
333
+ - `ray_scope`: last
334
+ - `ddp_timeout`: 1800
335
+ - `torch_compile`: False
336
+ - `torch_compile_backend`: None
337
+ - `torch_compile_mode`: None
338
+ - `dispatch_batches`: None
339
+ - `split_batches`: None
340
+ - `include_tokens_per_second`: False
341
+ - `include_num_input_tokens_seen`: False
342
+ - `neftune_noise_alpha`: None
343
+ - `optim_target_modules`: None
344
+ - `batch_eval_metrics`: False
345
+ - `eval_on_start`: False
346
+ - `use_liger_kernel`: False
347
+ - `eval_use_gather_object`: False
348
+ - `average_tokens_across_devices`: False
349
+ - `prompts`: None
350
+ - `batch_sampler`: batch_sampler
351
+ - `multi_dataset_batch_sampler`: proportional
352
+
353
+ </details>
354
+
355
+ ### Training Logs
356
+ | Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
357
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
358
+ | 0.1277 | 100 | 2.7301 | 2.2798 | nan |
359
+ | 0.2554 | 200 | 2.2058 | 2.0536 | nan |
360
+ | 0.3831 | 300 | 1.9996 | 1.9523 | nan |
361
+ | 0.5109 | 400 | 1.9243 | 1.8681 | nan |
362
+ | 0.6386 | 500 | 1.8063 | 1.8316 | nan |
363
+ | 0.7663 | 600 | 1.806 | 1.7893 | nan |
364
+ | 0.8940 | 700 | 1.7557 | 1.7632 | nan |
365
+ | 1.0217 | 800 | 1.7531 | 1.7564 | nan |
366
+ | 1.1494 | 900 | 1.6381 | 1.7492 | nan |
367
+ | 1.2771 | 1000 | 1.6087 | 1.7495 | nan |
368
+ | 1.4049 | 1100 | 1.5616 | 1.7211 | nan |
369
+ | 1.5326 | 1200 | 1.6219 | 1.7010 | nan |
370
+ | 1.6603 | 1300 | 1.5469 | 1.7011 | nan |
371
+ | 1.7880 | 1400 | 1.5912 | 1.6926 | nan |
372
+ | 1.9157 | 1500 | 1.5579 | 1.6825 | nan |
373
+ | 2.0434 | 1600 | 1.5455 | 1.6762 | nan |
374
+ | 2.1711 | 1700 | 1.4239 | 1.6916 | nan |
375
+ | 2.2989 | 1800 | 1.4543 | 1.6862 | nan |
376
+ | 2.4266 | 1900 | 1.4292 | 1.6812 | nan |
377
+ | 2.5543 | 2000 | 1.4573 | 1.6741 | nan |
378
+ | 2.6820 | 2100 | 1.4321 | 1.6683 | nan |
379
+ | 2.8097 | 2200 | 1.425 | 1.6683 | nan |
380
+ | 2.9374 | 2300 | 1.4247 | 1.6648 | nan |
381
+
382
+
383
+ ### Framework Versions
384
+ - Python: 3.10.12
385
+ - Sentence Transformers: 3.3.1
386
+ - Transformers: 4.48.0.dev0
387
+ - PyTorch: 2.5.1+cu121
388
+ - Accelerate: 1.2.1
389
+ - Datasets: 3.2.0
390
+ - Tokenizers: 0.21.0
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ #### MultipleNegativesRankingLoss
410
+ ```bibtex
411
+ @misc{henderson2017efficient,
412
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
413
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
414
+ year={2017},
415
+ eprint={1705.00652},
416
+ archivePrefix={arXiv},
417
+ primaryClass={cs.CL}
418
+ }
419
+ ```
420
+
421
+ <!--
422
+ ## Glossary
423
+
424
+ *Clearly define terms in order to be accessible across audiences.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Authors
429
+
430
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Contact
435
+
436
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/training_embeddings_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2-2025-01-07_10-18-23/final",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0.dev0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:830ca7d1c539e3f622e966d2c58399475730700c50ef0841f32e5bd7e171f10a
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260