alpcansoydas commited on
Commit
68d08e2
·
verified ·
1 Parent(s): 4e5cc5d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:25300
22
+ - loss:MultipleNegativesRankingLoss
23
+ widget:
24
+ - source_sentence: 16GB DDR4-2666-MHz RDIMM/PC4-21300/single rank/x4/1.2v
25
+ sentences:
26
+ - Management advisory services
27
+ - Printed circuits and integrated circuits and microassemblies
28
+ - Communications Devices and Accessories
29
+ - source_sentence: GRANDSTREAM GRP 2615 IP TELEFON MAKİNASI Gigabit 5 SIP Hesabı POE
30
+ + BLUETOOTH + WIFI IP TELEFON MAKİNASI / ADAPTÖRLÜ
31
+ sentences:
32
+ - Components for information technology or broadcasting or telecommunications
33
+ - Components for information technology or broadcasting or telecommunications
34
+ - Communications Devices and Accessories
35
+ - source_sentence: Samsung Galaxy S7 Edge 32GB Black
36
+ sentences:
37
+ - Components for information technology or broadcasting or telecommunications
38
+ - Computer Equipment and Accessories
39
+ - Communications Devices and Accessories
40
+ - source_sentence: HP.HP 146GB 10k 2.5 SAS HP SP HDD-Factory Intergrated
41
+ sentences:
42
+ - Components for information technology or broadcasting or telecommunications
43
+ - Communications Devices and Accessories
44
+ - Components for information technology or broadcasting or telecommunications
45
+ - source_sentence: COAXIAL CABLE/COAXIAL CABLE
46
+ sentences:
47
+ - Data Voice or Multimedia Network Equipment or Platforms and Accessories
48
+ - Components for information technology or broadcasting or telecommunications
49
+ - Electronic hardware and component parts and accessories
50
+ model-index:
51
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
52
+ results:
53
+ - task:
54
+ type: semantic-similarity
55
+ name: Semantic Similarity
56
+ dataset:
57
+ name: Unknown
58
+ type: unknown
59
+ metrics:
60
+ - type: pearson_cosine
61
+ value: .nan
62
+ name: Pearson Cosine
63
+ - type: spearman_cosine
64
+ value: .nan
65
+ name: Spearman Cosine
66
+ - type: pearson_manhattan
67
+ value: .nan
68
+ name: Pearson Manhattan
69
+ - type: spearman_manhattan
70
+ value: .nan
71
+ name: Spearman Manhattan
72
+ - type: pearson_euclidean
73
+ value: .nan
74
+ name: Pearson Euclidean
75
+ - type: spearman_euclidean
76
+ value: .nan
77
+ name: Spearman Euclidean
78
+ - type: pearson_dot
79
+ value: .nan
80
+ name: Pearson Dot
81
+ - type: spearman_dot
82
+ value: .nan
83
+ name: Spearman Dot
84
+ - type: pearson_max
85
+ value: .nan
86
+ name: Pearson Max
87
+ - type: spearman_max
88
+ value: .nan
89
+ name: Spearman Max
90
+ - task:
91
+ type: semantic-similarity
92
+ name: Semantic Similarity
93
+ dataset:
94
+ name: test eval
95
+ type: test-eval
96
+ metrics:
97
+ - type: pearson_cosine
98
+ value: .nan
99
+ name: Pearson Cosine
100
+ - type: spearman_cosine
101
+ value: .nan
102
+ name: Spearman Cosine
103
+ - type: pearson_manhattan
104
+ value: .nan
105
+ name: Pearson Manhattan
106
+ - type: spearman_manhattan
107
+ value: .nan
108
+ name: Spearman Manhattan
109
+ - type: pearson_euclidean
110
+ value: .nan
111
+ name: Pearson Euclidean
112
+ - type: spearman_euclidean
113
+ value: .nan
114
+ name: Spearman Euclidean
115
+ - type: pearson_dot
116
+ value: .nan
117
+ name: Pearson Dot
118
+ - type: spearman_dot
119
+ value: .nan
120
+ name: Spearman Dot
121
+ - type: pearson_max
122
+ value: .nan
123
+ name: Pearson Max
124
+ - type: spearman_max
125
+ value: .nan
126
+ name: Spearman Max
127
+ ---
128
+
129
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
130
+
131
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
132
+
133
+ ## Model Details
134
+
135
+ ### Model Description
136
+ - **Model Type:** Sentence Transformer
137
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
138
+ - **Maximum Sequence Length:** 384 tokens
139
+ - **Output Dimensionality:** 768 tokens
140
+ - **Similarity Function:** Cosine Similarity
141
+ <!-- - **Training Dataset:** Unknown -->
142
+ <!-- - **Language:** Unknown -->
143
+ <!-- - **License:** Unknown -->
144
+
145
+ ### Model Sources
146
+
147
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
148
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
149
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
150
+
151
+ ### Full Model Architecture
152
+
153
+ ```
154
+ SentenceTransformer(
155
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
156
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
157
+ (2): Normalize()
158
+ )
159
+ ```
160
+
161
+ ## Usage
162
+
163
+ ### Direct Usage (Sentence Transformers)
164
+
165
+ First install the Sentence Transformers library:
166
+
167
+ ```bash
168
+ pip install -U sentence-transformers
169
+ ```
170
+
171
+ Then you can load this model and run inference.
172
+ ```python
173
+ from sentence_transformers import SentenceTransformer
174
+
175
+ # Download from the 🤗 Hub
176
+ model = SentenceTransformer("alpcansoydas/product-model")
177
+ # Run inference
178
+ sentences = [
179
+ 'COAXIAL CABLE/COAXIAL CABLE',
180
+ 'Electronic hardware and component parts and accessories',
181
+ 'Components for information technology or broadcasting or telecommunications',
182
+ ]
183
+ embeddings = model.encode(sentences)
184
+ print(embeddings.shape)
185
+ # [3, 768]
186
+
187
+ # Get the similarity scores for the embeddings
188
+ similarities = model.similarity(embeddings, embeddings)
189
+ print(similarities.shape)
190
+ # [3, 3]
191
+ ```
192
+
193
+ <!--
194
+ ### Direct Usage (Transformers)
195
+
196
+ <details><summary>Click to see the direct usage in Transformers</summary>
197
+
198
+ </details>
199
+ -->
200
+
201
+ <!--
202
+ ### Downstream Usage (Sentence Transformers)
203
+
204
+ You can finetune this model on your own dataset.
205
+
206
+ <details><summary>Click to expand</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Out-of-Scope Use
213
+
214
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
215
+ -->
216
+
217
+ ## Evaluation
218
+
219
+ ### Metrics
220
+
221
+ #### Semantic Similarity
222
+
223
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
224
+
225
+ | Metric | Value |
226
+ |:-------------------|:--------|
227
+ | pearson_cosine | nan |
228
+ | spearman_cosine | nan |
229
+ | pearson_manhattan | nan |
230
+ | spearman_manhattan | nan |
231
+ | pearson_euclidean | nan |
232
+ | spearman_euclidean | nan |
233
+ | pearson_dot | nan |
234
+ | spearman_dot | nan |
235
+ | pearson_max | nan |
236
+ | **spearman_max** | **nan** |
237
+
238
+ #### Semantic Similarity
239
+ * Dataset: `test-eval`
240
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
241
+
242
+ | Metric | Value |
243
+ |:-------------------|:--------|
244
+ | pearson_cosine | nan |
245
+ | spearman_cosine | nan |
246
+ | pearson_manhattan | nan |
247
+ | spearman_manhattan | nan |
248
+ | pearson_euclidean | nan |
249
+ | spearman_euclidean | nan |
250
+ | pearson_dot | nan |
251
+ | spearman_dot | nan |
252
+ | pearson_max | nan |
253
+ | **spearman_max** | **nan** |
254
+
255
+ <!--
256
+ ## Bias, Risks and Limitations
257
+
258
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
259
+ -->
260
+
261
+ <!--
262
+ ### Recommendations
263
+
264
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
265
+ -->
266
+
267
+ ## Training Details
268
+
269
+ ### Training Dataset
270
+
271
+ #### Unnamed Dataset
272
+
273
+
274
+ * Size: 25,300 training samples
275
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>texts</code>
276
+ * Approximate statistics based on the first 1000 samples:
277
+ | | sentence1 | sentence2 | texts |
278
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------|
279
+ | type | string | string | list |
280
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.76 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>size: 2 elements</li></ul> |
281
+ * Samples:
282
+ | sentence1 | sentence2 | texts |
283
+ |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------|
284
+ | <code>CISCO.Power Injector for 1100, 1130AG, 1200 1230AG, 1240AG, 521</code> | <code>Power sources</code> | <code>['CISCO.Power Injector for 1100, 1130AG, 1200 1230AG, 1240AG, 521', 'Power sources']</code> |
285
+ | <code>802.11ac W2 Low-Profile Outdoor AP, Internal Ant, E Reg Dom.</code> | <code>Data Voice or Multimedia Network Equipment or Platforms and Accessories</code> | <code>['802.11ac W2 Low-Profile Outdoor AP, Internal Ant, E Reg Dom.', 'Data Voice or Multimedia Network Equipment or Platforms and Accessories']</code> |
286
+ | <code>NSO</code> | <code>Software</code> | <code>['NSO', 'Software']</code> |
287
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
288
+ ```json
289
+ {
290
+ "scale": 20.0,
291
+ "similarity_fct": "cos_sim"
292
+ }
293
+ ```
294
+
295
+ ### Evaluation Dataset
296
+
297
+ #### Unnamed Dataset
298
+
299
+
300
+ * Size: 5,422 evaluation samples
301
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>texts</code>
302
+ * Approximate statistics based on the first 1000 samples:
303
+ | | sentence1 | sentence2 | texts |
304
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------|
305
+ | type | string | string | list |
306
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.96 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.96 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>size: 2 elements</li></ul> |
307
+ * Samples:
308
+ | sentence1 | sentence2 | texts |
309
+ |:--------------------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
310
+ | <code>MMS SDPA PROXY APPL - GELISTIRME</code> | <code>Software</code> | <code>['MMS SDPA PROXY APPL - GELISTIRME', 'Software']</code> |
311
+ | <code>IPHONE 13 PINK 128GB-TUR</code> | <code>Communications Devices and Accessories</code> | <code>['IPHONE 13 PINK 128GB-TUR', 'Communications Devices and Accessories']</code> |
312
+ | <code>12FMTPEf( Elite Female ) x 06LCDX Outdor Cable , 5.0mm , 50m</code> | <code>Electrical equipment and components and supplies</code> | <code>['12FMTPEf( Elite Female ) x 06LCDX Outdor Cable , 5.0mm , 50m', 'Electrical equipment and components and supplies']</code> |
313
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
314
+ ```json
315
+ {
316
+ "scale": 20.0,
317
+ "similarity_fct": "cos_sim"
318
+ }
319
+ ```
320
+
321
+ ### Training Hyperparameters
322
+ #### Non-Default Hyperparameters
323
+
324
+ - `eval_strategy`: steps
325
+ - `per_device_train_batch_size`: 16
326
+ - `per_device_eval_batch_size`: 16
327
+ - `num_train_epochs`: 2
328
+ - `warmup_ratio`: 0.1
329
+ - `fp16`: True
330
+
331
+ #### All Hyperparameters
332
+ <details><summary>Click to expand</summary>
333
+
334
+ - `overwrite_output_dir`: False
335
+ - `do_predict`: False
336
+ - `eval_strategy`: steps
337
+ - `prediction_loss_only`: True
338
+ - `per_device_train_batch_size`: 16
339
+ - `per_device_eval_batch_size`: 16
340
+ - `per_gpu_train_batch_size`: None
341
+ - `per_gpu_eval_batch_size`: None
342
+ - `gradient_accumulation_steps`: 1
343
+ - `eval_accumulation_steps`: None
344
+ - `torch_empty_cache_steps`: None
345
+ - `learning_rate`: 5e-05
346
+ - `weight_decay`: 0.0
347
+ - `adam_beta1`: 0.9
348
+ - `adam_beta2`: 0.999
349
+ - `adam_epsilon`: 1e-08
350
+ - `max_grad_norm`: 1.0
351
+ - `num_train_epochs`: 2
352
+ - `max_steps`: -1
353
+ - `lr_scheduler_type`: linear
354
+ - `lr_scheduler_kwargs`: {}
355
+ - `warmup_ratio`: 0.1
356
+ - `warmup_steps`: 0
357
+ - `log_level`: passive
358
+ - `log_level_replica`: warning
359
+ - `log_on_each_node`: True
360
+ - `logging_nan_inf_filter`: True
361
+ - `save_safetensors`: True
362
+ - `save_on_each_node`: False
363
+ - `save_only_model`: False
364
+ - `restore_callback_states_from_checkpoint`: False
365
+ - `no_cuda`: False
366
+ - `use_cpu`: False
367
+ - `use_mps_device`: False
368
+ - `seed`: 42
369
+ - `data_seed`: None
370
+ - `jit_mode_eval`: False
371
+ - `use_ipex`: False
372
+ - `bf16`: False
373
+ - `fp16`: True
374
+ - `fp16_opt_level`: O1
375
+ - `half_precision_backend`: auto
376
+ - `bf16_full_eval`: False
377
+ - `fp16_full_eval`: False
378
+ - `tf32`: None
379
+ - `local_rank`: 0
380
+ - `ddp_backend`: None
381
+ - `tpu_num_cores`: None
382
+ - `tpu_metrics_debug`: False
383
+ - `debug`: []
384
+ - `dataloader_drop_last`: False
385
+ - `dataloader_num_workers`: 0
386
+ - `dataloader_prefetch_factor`: None
387
+ - `past_index`: -1
388
+ - `disable_tqdm`: False
389
+ - `remove_unused_columns`: True
390
+ - `label_names`: None
391
+ - `load_best_model_at_end`: False
392
+ - `ignore_data_skip`: False
393
+ - `fsdp`: []
394
+ - `fsdp_min_num_params`: 0
395
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
396
+ - `fsdp_transformer_layer_cls_to_wrap`: None
397
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
398
+ - `deepspeed`: None
399
+ - `label_smoothing_factor`: 0.0
400
+ - `optim`: adamw_torch
401
+ - `optim_args`: None
402
+ - `adafactor`: False
403
+ - `group_by_length`: False
404
+ - `length_column_name`: length
405
+ - `ddp_find_unused_parameters`: None
406
+ - `ddp_bucket_cap_mb`: None
407
+ - `ddp_broadcast_buffers`: False
408
+ - `dataloader_pin_memory`: True
409
+ - `dataloader_persistent_workers`: False
410
+ - `skip_memory_metrics`: True
411
+ - `use_legacy_prediction_loop`: False
412
+ - `push_to_hub`: False
413
+ - `resume_from_checkpoint`: None
414
+ - `hub_model_id`: None
415
+ - `hub_strategy`: every_save
416
+ - `hub_private_repo`: False
417
+ - `hub_always_push`: False
418
+ - `gradient_checkpointing`: False
419
+ - `gradient_checkpointing_kwargs`: None
420
+ - `include_inputs_for_metrics`: False
421
+ - `eval_do_concat_batches`: True
422
+ - `fp16_backend`: auto
423
+ - `push_to_hub_model_id`: None
424
+ - `push_to_hub_organization`: None
425
+ - `mp_parameters`:
426
+ - `auto_find_batch_size`: False
427
+ - `full_determinism`: False
428
+ - `torchdynamo`: None
429
+ - `ray_scope`: last
430
+ - `ddp_timeout`: 1800
431
+ - `torch_compile`: False
432
+ - `torch_compile_backend`: None
433
+ - `torch_compile_mode`: None
434
+ - `dispatch_batches`: None
435
+ - `split_batches`: None
436
+ - `include_tokens_per_second`: False
437
+ - `include_num_input_tokens_seen`: False
438
+ - `neftune_noise_alpha`: None
439
+ - `optim_target_modules`: None
440
+ - `batch_eval_metrics`: False
441
+ - `eval_on_start`: False
442
+ - `eval_use_gather_object`: False
443
+ - `batch_sampler`: batch_sampler
444
+ - `multi_dataset_batch_sampler`: proportional
445
+
446
+ </details>
447
+
448
+ ### Training Logs
449
+ | Epoch | Step | Training Loss | Validation Loss | spearman_max | test-eval_spearman_max |
450
+ |:------:|:----:|:-------------:|:---------------:|:------------:|:----------------------:|
451
+ | 0.0632 | 100 | 4.9949 | 2.0402 | nan | - |
452
+ | 0.1264 | 200 | 1.9907 | 1.8355 | nan | - |
453
+ | 0.1896 | 300 | 1.8898 | 1.9113 | nan | - |
454
+ | 0.2528 | 400 | 1.8334 | 1.7294 | nan | - |
455
+ | 0.3161 | 500 | 1.7497 | 1.7388 | nan | - |
456
+ | 0.3793 | 600 | 1.6786 | 1.6524 | nan | - |
457
+ | 0.4425 | 700 | 1.6914 | 1.6440 | nan | - |
458
+ | 0.5057 | 800 | 1.6303 | 1.6218 | nan | - |
459
+ | 0.5689 | 900 | 1.6388 | 1.6212 | nan | - |
460
+ | 0.6321 | 1000 | 1.6032 | 1.6182 | nan | - |
461
+ | 0.6953 | 1100 | 1.5957 | 1.5945 | nan | - |
462
+ | 0.7585 | 1200 | 1.6303 | 1.5753 | nan | - |
463
+ | 0.8217 | 1300 | 1.5978 | 1.5705 | nan | - |
464
+ | 0.8850 | 1400 | 1.554 | 1.5663 | nan | - |
465
+ | 0.9482 | 1500 | 1.4899 | 1.5525 | nan | - |
466
+ | 1.0114 | 1600 | 1.4792 | 1.5962 | nan | - |
467
+ | 1.0746 | 1700 | 1.4683 | 1.5481 | nan | - |
468
+ | 1.1378 | 1800 | 1.4615 | 1.5256 | nan | - |
469
+ | 1.2010 | 1900 | 1.4395 | 1.5321 | nan | - |
470
+ | 1.2642 | 2000 | 1.3524 | 1.5148 | nan | - |
471
+ | 1.3274 | 2100 | 1.3876 | 1.5356 | nan | - |
472
+ | 1.3906 | 2200 | 1.4376 | 1.4979 | nan | - |
473
+ | 1.4539 | 2300 | 1.4187 | 1.5046 | nan | - |
474
+ | 1.5171 | 2400 | 1.4604 | 1.5011 | nan | - |
475
+ | 1.5803 | 2500 | 1.4194 | 1.4851 | nan | - |
476
+ | 1.6435 | 2600 | 1.4057 | 1.4897 | nan | - |
477
+ | 1.7067 | 2700 | 1.3683 | 1.4921 | nan | - |
478
+ | 1.7699 | 2800 | 1.3333 | 1.4797 | nan | - |
479
+ | 1.8331 | 2900 | 1.3961 | 1.4752 | nan | - |
480
+ | 1.8963 | 3000 | 1.3718 | 1.4693 | nan | - |
481
+ | 1.9595 | 3100 | 1.3263 | 1.4699 | nan | - |
482
+ | 2.0 | 3164 | - | - | - | nan |
483
+
484
+
485
+ ### Framework Versions
486
+ - Python: 3.10.12
487
+ - Sentence Transformers: 3.2.0
488
+ - Transformers: 4.44.2
489
+ - PyTorch: 2.4.1+cu121
490
+ - Accelerate: 0.34.2
491
+ - Datasets: 3.0.1
492
+ - Tokenizers: 0.19.1
493
+
494
+ ## Citation
495
+
496
+ ### BibTeX
497
+
498
+ #### Sentence Transformers
499
+ ```bibtex
500
+ @inproceedings{reimers-2019-sentence-bert,
501
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
502
+ author = "Reimers, Nils and Gurevych, Iryna",
503
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
504
+ month = "11",
505
+ year = "2019",
506
+ publisher = "Association for Computational Linguistics",
507
+ url = "https://arxiv.org/abs/1908.10084",
508
+ }
509
+ ```
510
+
511
+ #### MultipleNegativesRankingLoss
512
+ ```bibtex
513
+ @misc{henderson2017efficient,
514
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
515
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
516
+ year={2017},
517
+ eprint={1705.00652},
518
+ archivePrefix={arXiv},
519
+ primaryClass={cs.CL}
520
+ }
521
+ ```
522
+
523
+ <!--
524
+ ## Glossary
525
+
526
+ *Clearly define terms in order to be accessible across audiences.*
527
+ -->
528
+
529
+ <!--
530
+ ## Model Card Authors
531
+
532
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
533
+ -->
534
+
535
+ <!--
536
+ ## Model Card Contact
537
+
538
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
539
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce2e42de066ba635ca07374af647d9209b143bb2f0b366c0eafe24827b37cfce
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff