alpha-brain commited on
Commit
9481afa
1 Parent(s): ec4f713

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/stsb-distilbert-base
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:622302
42
+ - loss:MultipleNegativesRankingLoss
43
+ widget:
44
+ - source_sentence: Does fTO Genotype interact with Improvement in Aerobic Fitness
45
+ on Body Weight Loss During Lifestyle Intervention?
46
+ sentences:
47
+ - The study population count 46 550 male workers, 1670 (3.6%) of whom incurred at
48
+ least one work-related injury requiring admission to hospital within a period
49
+ of 5 years following hearing tests conducted between 1987 and 2005. The noise
50
+ exposure and hearing loss-related data were gathered during occupational noise-induced
51
+ hearing loss (NIHL) screening. The hospital data were used to identify all members
52
+ of the study population who were admitted, and the reason for admission. Finally,
53
+ access to the death-related data made it possible to identify participants who
54
+ died during the course of the study. Cox proportional hazards model taking into
55
+ account hearing status, noise levels, age and cumulative duration of noise exposure
56
+ at the time of the hearing test established the risk of work-related injuries
57
+ leading to admission to hospital.
58
+ - Carriers of a hereditary mutation in BRCA are at high risk for breast and ovarian
59
+ cancer. The first person from a family known to carry the mutation, the index
60
+ person, has to share genetic information with relatives. This study is aimed at
61
+ determining the number of relatives tested for a BRCA mutation, and the exploration
62
+ of facilitating and debilitating factors in the transmission of genetic information
63
+ from index patient to relatives.
64
+ - Not every participant responds with a comparable body weight loss to lifestyle
65
+ intervention, despite the same compliance. Genetic factors may explain parts of
66
+ this difference. Variation in fat mass and obesity-associated gene (FTO) is the
67
+ strongest common genetic determinant of body weight. The aim of the present study
68
+ was to evaluate the impact of FTO genotype differences in the link between improvement
69
+ of fitness and reduction of body weight during a lifestyle intervention.
70
+ - source_sentence: Is family history of exceptional longevity associated with lower
71
+ serum uric acid levels in Ashkenazi Jews?
72
+ sentences:
73
+ - To evaluate the effect of fasting on gastric emptying in mice.
74
+ - To test whether lower serum uric acid (UA) levels are associated with longevity
75
+ independent of renal function.
76
+ - Inducible NOS mRNA expression was significantly lower in CF patients with and
77
+ without bacterial infection than in healthy children (0.22 and 0.23 v 0.76; p=0.002
78
+ and p=0.01, respectively). Low levels of iNOS gene expression were accompanied
79
+ by low levels of iNOS protein expression as detected by Western blot analysis.
80
+ - source_sentence: Do hepatocellular carcinomas compromise quantitative tests of liver
81
+ function?
82
+ sentences:
83
+ - MEPE had no effect on glomerular filtration rate or single-nephron filtration
84
+ rate, but it increased phosphate excretion significantly. In animals infused with
85
+ vehicle alone (time controls), no significant change was seen in either the proximal
86
+ tubular fluid:plasma phosphate concentration ratio (TF/P(Pi)) or the fraction
87
+ of filtered phosphate reaching the late proximal convoluted tubule (FD(Pi)); whereas
88
+ in rats infused with MEPE, TF/P(Pi) increased from 0.49 ± 0.07 to 0.68 ± 0.04
89
+ (n = 22; P = 0.01) and FD(Pi) increased from 0.20 ± 0.03 to 0.33 ± 0.03 (n = 22;
90
+ P < 0.01).
91
+ - Hepatocellular carcinoma, which usually develops in cirrhotic livers, is one of
92
+ the most frequent cancers worldwide. If and how far hepatoma growth influences
93
+ liver function is unclear. Therefore, we compared a broad panel of quantitative
94
+ tests of liver function in cirrhotic patients with and without hepatocellular
95
+ carcinoma.
96
+ - A study was undertaken to measure cough frequency in children with stable asthma
97
+ using a validated monitoring device, and to assess the correlation between cough
98
+ frequency and the degree and type of airway inflammation.
99
+ - source_sentence: Does hand-assisted laparoscopic digestive surgery provide safety
100
+ and tactile sensation for malignancy or obesity?
101
+ sentences:
102
+ - In human aortic endothelial cells (HAECs) exposed to high glucose and aortas of
103
+ diabetic mice, activation of p66(Shc) by protein kinase C βII (PKCβII) persisted
104
+ after returning to normoglycemia. Persistent p66(Shc) upregulation and mitochondrial
105
+ translocation were associated with continued reactive oxygen species (ROS) production,
106
+ reduced nitric oxide bioavailability, and apoptosis. We show that p66(Shc) gene
107
+ overexpression was epigenetically regulated by promoter CpG hypomethylation and
108
+ general control nonderepressible 5-induced histone 3 acetylation. Furthermore,
109
+ p66(Shc)-derived ROS production maintained PKCβII upregulation and PKCβII-dependent
110
+ inhibitory phosphorylation of endothelial nitric oxide synthase at Thr-495, leading
111
+ to a detrimental vicious cycle despite restoration of normoglycemia. Moreover,
112
+ p66(Shc) activation accounted for the persistent elevation of the advanced glycated
113
+ end product precursor methylglyoxal. In vitro and in vivo gene silencing of p66(Shc),
114
+ performed at the time of glucose normalization, blunted ROS production, restored
115
+ endothelium-dependent vasorelaxation, and attenuated apoptosis by limiting cytochrome
116
+ c release, caspase 3 activity, and cleavage of poly (ADP-ribose) polymerase.
117
+ - Recently, 13 of our patients underwent hand-assisted advanced laparoscopic surgery
118
+ using this device. In this series, we had two cases of gastrectomy, two cases
119
+ of gastric bypass for morbid obesity, two Whipple cases for periampullary tumor,
120
+ and seven cases of bowel resection. On the basis of this series, we were able
121
+ to assess the utility of this device.
122
+ - 'Healthy men and women (n = 13; age: 48 +/- 17 y) were studied on 2 occasions:
123
+ after > or = 48 h with no exercise and 17 h after a 60-min bout of endurance exercise.
124
+ During each trial, brachial artery flow mediated dilation (FMD) was used to assess
125
+ endothelial function before and after the ingestion of a candy bar and soft drink.
126
+ Glucose, insulin, and thiobarbituric acid-reactive substances (TBARS), a marker
127
+ of oxidative stress, were measured in blood obtained during each FMD measurement.
128
+ The insulin sensitivity index was calculated from the glucose and insulin data.'
129
+ - source_sentence: Do correlations between plasma-neuropeptides and temperament dimensions
130
+ differ between suicidal patients and healthy controls?
131
+ sentences:
132
+ - Decreased plasma levels of plasma-neuropeptide Y (NPY) and plasma-corticotropin
133
+ releasing hormone (CRH), and increased levels of plasma delta-sleep inducing peptide
134
+ (DSIP) in suicide attempters with mood disorders have previously been observed.
135
+ This study was performed in order to further understand the clinical relevance
136
+ of these findings.
137
+ - Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary
138
+ capillary leak was estimated using radioiodinated albumin. Development of pulmonary
139
+ edema was assessed by measurement of wet and dry lung weights. Cell surface expression
140
+ of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked
141
+ immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1,
142
+ and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription
143
+ polymerase chain reaction was used to determine the expression of cytokine mRNA
144
+ (IL-1beta, CINC-1 and CINC-3) in lung tissue.
145
+ - 'Seven hundred fifty patients entered the study. One hundred sixty-eight patients
146
+ (22.4%) presented with a total of 193 extracutaneous manifestations, as follows:
147
+ articular (47.2%), neurologic (17.1%), vascular (9.3%), ocular (8.3%), gastrointestinal
148
+ (6.2%), respiratory (2.6%), cardiac (1%), and renal (1%). Other autoimmune conditions
149
+ were present in 7.3% of patients. Neurologic involvement consisted of epilepsy,
150
+ central nervous system vasculitis, peripheral neuropathy, vascular malformations,
151
+ headache, and neuroimaging abnormalities. Ocular manifestations were episcleritis,
152
+ uveitis, xerophthalmia, glaucoma, and papilledema. In more than one-fourth of
153
+ these children, articular, neurologic, and ocular involvements were unrelated
154
+ to the site of skin lesions. Raynaud''s phenomenon was reported in 16 patients.
155
+ Respiratory involvement consisted essentially of restrictive lung disease. Gastrointestinal
156
+ involvement was reported in 12 patients and consisted exclusively of gastroesophageal
157
+ reflux. Thirty patients (4%) had multiple extracutaneous features, but systemic
158
+ sclerosis (SSc) developed in only 1 patient. In patients with extracutaneous involvement,
159
+ the prevalence of antinuclear antibodies and rheumatoid factor was significantly
160
+ higher than that among patients with only skin involvement. However, Scl-70 and
161
+ anticentromere, markers of SSc, were not significantly increased.'
162
+ model-index:
163
+ - name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
164
+ results:
165
+ - task:
166
+ type: information-retrieval
167
+ name: Information Retrieval
168
+ dataset:
169
+ name: med eval dev
170
+ type: med-eval-dev
171
+ metrics:
172
+ - type: cosine_accuracy@1
173
+ value: 0.9825
174
+ name: Cosine Accuracy@1
175
+ - type: cosine_accuracy@3
176
+ value: 0.998
177
+ name: Cosine Accuracy@3
178
+ - type: cosine_accuracy@5
179
+ value: 0.9985
180
+ name: Cosine Accuracy@5
181
+ - type: cosine_accuracy@10
182
+ value: 0.9985
183
+ name: Cosine Accuracy@10
184
+ - type: cosine_precision@1
185
+ value: 0.9825
186
+ name: Cosine Precision@1
187
+ - type: cosine_precision@3
188
+ value: 0.8438333333333332
189
+ name: Cosine Precision@3
190
+ - type: cosine_precision@5
191
+ value: 0.5588
192
+ name: Cosine Precision@5
193
+ - type: cosine_precision@10
194
+ value: 0.29309999999999997
195
+ name: Cosine Precision@10
196
+ - type: cosine_recall@1
197
+ value: 0.3413382936507936
198
+ name: Cosine Recall@1
199
+ - type: cosine_recall@3
200
+ value: 0.8453946428571428
201
+ name: Cosine Recall@3
202
+ - type: cosine_recall@5
203
+ value: 0.9191847222222223
204
+ name: Cosine Recall@5
205
+ - type: cosine_recall@10
206
+ value: 0.9578416666666667
207
+ name: Cosine Recall@10
208
+ - type: cosine_ndcg@10
209
+ value: 0.9461928701093355
210
+ name: Cosine Ndcg@10
211
+ - type: cosine_mrr@10
212
+ value: 0.9899583333333333
213
+ name: Cosine Mrr@10
214
+ - type: cosine_map@100
215
+ value: 0.9168772609607218
216
+ name: Cosine Map@100
217
+ - type: dot_accuracy@1
218
+ value: 0.9705
219
+ name: Dot Accuracy@1
220
+ - type: dot_accuracy@3
221
+ value: 0.9955
222
+ name: Dot Accuracy@3
223
+ - type: dot_accuracy@5
224
+ value: 0.9985
225
+ name: Dot Accuracy@5
226
+ - type: dot_accuracy@10
227
+ value: 0.999
228
+ name: Dot Accuracy@10
229
+ - type: dot_precision@1
230
+ value: 0.9705
231
+ name: Dot Precision@1
232
+ - type: dot_precision@3
233
+ value: 0.8141666666666666
234
+ name: Dot Precision@3
235
+ - type: dot_precision@5
236
+ value: 0.546
237
+ name: Dot Precision@5
238
+ - type: dot_precision@10
239
+ value: 0.28995
240
+ name: Dot Precision@10
241
+ - type: dot_recall@1
242
+ value: 0.3365662698412698
243
+ name: Dot Recall@1
244
+ - type: dot_recall@3
245
+ value: 0.8156482142857142
246
+ name: Dot Recall@3
247
+ - type: dot_recall@5
248
+ value: 0.8994174603174604
249
+ name: Dot Recall@5
250
+ - type: dot_recall@10
251
+ value: 0.9480904761904763
252
+ name: Dot Recall@10
253
+ - type: dot_ndcg@10
254
+ value: 0.9297315742366127
255
+ name: Dot Ndcg@10
256
+ - type: dot_mrr@10
257
+ value: 0.9828083333333333
258
+ name: Dot Mrr@10
259
+ - type: dot_map@100
260
+ value: 0.8926507948277561
261
+ name: Dot Map@100
262
+ ---
263
+
264
+ # SentenceTransformer based on sentence-transformers/stsb-distilbert-base
265
+
266
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
267
+
268
+ ## Model Details
269
+
270
+ ### Model Description
271
+ - **Model Type:** Sentence Transformer
272
+ - **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
273
+ - **Maximum Sequence Length:** 128 tokens
274
+ - **Output Dimensionality:** 768 tokens
275
+ - **Similarity Function:** Cosine Similarity
276
+ <!-- - **Training Dataset:** Unknown -->
277
+ <!-- - **Language:** Unknown -->
278
+ <!-- - **License:** Unknown -->
279
+
280
+ ### Model Sources
281
+
282
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
283
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
284
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
285
+
286
+ ### Full Model Architecture
287
+
288
+ ```
289
+ SentenceTransformer(
290
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
291
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
292
+ )
293
+ ```
294
+
295
+ ## Usage
296
+
297
+ ### Direct Usage (Sentence Transformers)
298
+
299
+ First install the Sentence Transformers library:
300
+
301
+ ```bash
302
+ pip install -U sentence-transformers
303
+ ```
304
+
305
+ Then you can load this model and run inference.
306
+ ```python
307
+ from sentence_transformers import SentenceTransformer
308
+
309
+ # Download from the 🤗 Hub
310
+ model = SentenceTransformer("alpha-brain/stsb-distilbert-base-mnrl")
311
+ # Run inference
312
+ sentences = [
313
+ 'Do correlations between plasma-neuropeptides and temperament dimensions differ between suicidal patients and healthy controls?',
314
+ 'Decreased plasma levels of plasma-neuropeptide Y (NPY) and plasma-corticotropin releasing hormone (CRH), and increased levels of plasma delta-sleep inducing peptide (DSIP) in suicide attempters with mood disorders have previously been observed. This study was performed in order to further understand the clinical relevance of these findings.',
315
+ "Seven hundred fifty patients entered the study. One hundred sixty-eight patients (22.4%) presented with a total of 193 extracutaneous manifestations, as follows: articular (47.2%), neurologic (17.1%), vascular (9.3%), ocular (8.3%), gastrointestinal (6.2%), respiratory (2.6%), cardiac (1%), and renal (1%). Other autoimmune conditions were present in 7.3% of patients. Neurologic involvement consisted of epilepsy, central nervous system vasculitis, peripheral neuropathy, vascular malformations, headache, and neuroimaging abnormalities. Ocular manifestations were episcleritis, uveitis, xerophthalmia, glaucoma, and papilledema. In more than one-fourth of these children, articular, neurologic, and ocular involvements were unrelated to the site of skin lesions. Raynaud's phenomenon was reported in 16 patients. Respiratory involvement consisted essentially of restrictive lung disease. Gastrointestinal involvement was reported in 12 patients and consisted exclusively of gastroesophageal reflux. Thirty patients (4%) had multiple extracutaneous features, but systemic sclerosis (SSc) developed in only 1 patient. In patients with extracutaneous involvement, the prevalence of antinuclear antibodies and rheumatoid factor was significantly higher than that among patients with only skin involvement. However, Scl-70 and anticentromere, markers of SSc, were not significantly increased.",
316
+ ]
317
+ embeddings = model.encode(sentences)
318
+ print(embeddings.shape)
319
+ # [3, 768]
320
+
321
+ # Get the similarity scores for the embeddings
322
+ similarities = model.similarity(embeddings, embeddings)
323
+ print(similarities.shape)
324
+ # [3, 3]
325
+ ```
326
+
327
+ <!--
328
+ ### Direct Usage (Transformers)
329
+
330
+ <details><summary>Click to see the direct usage in Transformers</summary>
331
+
332
+ </details>
333
+ -->
334
+
335
+ <!--
336
+ ### Downstream Usage (Sentence Transformers)
337
+
338
+ You can finetune this model on your own dataset.
339
+
340
+ <details><summary>Click to expand</summary>
341
+
342
+ </details>
343
+ -->
344
+
345
+ <!--
346
+ ### Out-of-Scope Use
347
+
348
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
349
+ -->
350
+
351
+ ## Evaluation
352
+
353
+ ### Metrics
354
+
355
+ #### Information Retrieval
356
+ * Dataset: `med-eval-dev`
357
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
358
+
359
+ | Metric | Value |
360
+ |:--------------------|:-----------|
361
+ | cosine_accuracy@1 | 0.9825 |
362
+ | cosine_accuracy@3 | 0.998 |
363
+ | cosine_accuracy@5 | 0.9985 |
364
+ | cosine_accuracy@10 | 0.9985 |
365
+ | cosine_precision@1 | 0.9825 |
366
+ | cosine_precision@3 | 0.8438 |
367
+ | cosine_precision@5 | 0.5588 |
368
+ | cosine_precision@10 | 0.2931 |
369
+ | cosine_recall@1 | 0.3413 |
370
+ | cosine_recall@3 | 0.8454 |
371
+ | cosine_recall@5 | 0.9192 |
372
+ | cosine_recall@10 | 0.9578 |
373
+ | cosine_ndcg@10 | 0.9462 |
374
+ | cosine_mrr@10 | 0.99 |
375
+ | **cosine_map@100** | **0.9169** |
376
+ | dot_accuracy@1 | 0.9705 |
377
+ | dot_accuracy@3 | 0.9955 |
378
+ | dot_accuracy@5 | 0.9985 |
379
+ | dot_accuracy@10 | 0.999 |
380
+ | dot_precision@1 | 0.9705 |
381
+ | dot_precision@3 | 0.8142 |
382
+ | dot_precision@5 | 0.546 |
383
+ | dot_precision@10 | 0.2899 |
384
+ | dot_recall@1 | 0.3366 |
385
+ | dot_recall@3 | 0.8156 |
386
+ | dot_recall@5 | 0.8994 |
387
+ | dot_recall@10 | 0.9481 |
388
+ | dot_ndcg@10 | 0.9297 |
389
+ | dot_mrr@10 | 0.9828 |
390
+ | dot_map@100 | 0.8927 |
391
+
392
+ <!--
393
+ ## Bias, Risks and Limitations
394
+
395
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
396
+ -->
397
+
398
+ <!--
399
+ ### Recommendations
400
+
401
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
402
+ -->
403
+
404
+ ## Training Details
405
+
406
+ ### Training Dataset
407
+
408
+ #### Unnamed Dataset
409
+
410
+
411
+ * Size: 622,302 training samples
412
+ * Columns: <code>question</code> and <code>contexts</code>
413
+ * Approximate statistics based on the first 1000 samples:
414
+ | | question | contexts |
415
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
416
+ | type | string | string |
417
+ | details | <ul><li>min: 9 tokens</li><li>mean: 27.35 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 88.52 tokens</li><li>max: 128 tokens</li></ul> |
418
+ * Samples:
419
+ | question | contexts |
420
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
421
+ | <code>Does low-level human equivalent gestational lead exposure produce sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice?</code> | <code>Low-level developmental lead exposure is linked to cognitive and neurological disorders in children. However, the long-term effects of gestational lead exposure (GLE) have received little attention.</code> |
422
+ | <code>Does insulin in combination with selenium inhibit HG/Pal-induced cardiomyocyte apoptosis by Cbl-b regulating p38MAPK/CBP/Ku70 pathway?</code> | <code>In this study, we investigated whether insulin and selenium in combination (In/Se) suppresses cardiomyocyte apoptosis and whether this protection is mediated by Cbl-b regulating p38MAPK/CBP/Ku70 pathway.</code> |
423
+ | <code>Does arthroscopic subacromial decompression result in normal shoulder function after two years in less than 50 % of patients?</code> | <code>The aim of this study was to evaluate the outcome two years after arthroscopic subacromial decompression using the Western Ontario Rotator-Cuff (WORC) index and a diagram-based questionnaire to self-assess active shoulder range of motion (ROM).</code> |
424
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
425
+ ```json
426
+ {
427
+ "scale": 20.0,
428
+ "similarity_fct": "cos_sim"
429
+ }
430
+ ```
431
+
432
+ ### Evaluation Dataset
433
+
434
+ #### Unnamed Dataset
435
+
436
+
437
+ * Size: 32,753 evaluation samples
438
+ * Columns: <code>question</code> and <code>contexts</code>
439
+ * Approximate statistics based on the first 1000 samples:
440
+ | | question | contexts |
441
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
442
+ | type | string | string |
443
+ | details | <ul><li>min: 11 tokens</li><li>mean: 27.52 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 88.59 tokens</li><li>max: 128 tokens</li></ul> |
444
+ * Samples:
445
+ | question | contexts |
446
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
447
+ | <code>Does [ Chemical components from essential oil of Pandanus amaryllifolius leave ]?</code> | <code>The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method.</code> |
448
+ | <code>Is elevated C-reactive protein associated with the tumor depth of invasion but not with disease recurrence in stage II and III colorectal cancer?</code> | <code>We previously demonstrated that elevated serum C-reactive protein (CRP) level is associated with depth of tumor invasion in operable colorectal cancer. There is also increasing evidence to show that raised CRP concentration is associated with poor survival in patients with colorectal cancer. The purpose of this study was to investigate the correlation between preoperative CRP concentrations and short-term disease recurrence in cases with stage II and III colorectal cancer.</code> |
449
+ | <code>Do neuropeptide Y and peptide YY protect from weight loss caused by Bacille Calmette-Guérin in mice?</code> | <code>Deletion of PYY and NPY aggravated the BCG-induced loss of body weight, which was most pronounced in NPY-/-;PYY-/- mice (maximum loss: 15%). The weight loss in NPY-/-;PYY-/- mice did not normalize during the 2 week observation period. BCG suppressed the circadian pattern of locomotion, exploration and food intake. However, these changes took a different time course than the prolonged weight loss caused by BCG in NPY-/-;PYY-/- mice. The effect of BCG to increase circulating IL-6 (measured 16 days post-treatment) remained unaltered by knockout of PYY, NPY or NPY plus PYY.</code> |
450
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
451
+ ```json
452
+ {
453
+ "scale": 20.0,
454
+ "similarity_fct": "cos_sim"
455
+ }
456
+ ```
457
+
458
+ ### Training Hyperparameters
459
+ #### Non-Default Hyperparameters
460
+
461
+ - `eval_strategy`: steps
462
+ - `per_device_train_batch_size`: 64
463
+ - `num_train_epochs`: 1
464
+
465
+ #### All Hyperparameters
466
+ <details><summary>Click to expand</summary>
467
+
468
+ - `overwrite_output_dir`: False
469
+ - `do_predict`: False
470
+ - `eval_strategy`: steps
471
+ - `prediction_loss_only`: True
472
+ - `per_device_train_batch_size`: 64
473
+ - `per_device_eval_batch_size`: 8
474
+ - `per_gpu_train_batch_size`: None
475
+ - `per_gpu_eval_batch_size`: None
476
+ - `gradient_accumulation_steps`: 1
477
+ - `eval_accumulation_steps`: None
478
+ - `torch_empty_cache_steps`: None
479
+ - `learning_rate`: 5e-05
480
+ - `weight_decay`: 0.0
481
+ - `adam_beta1`: 0.9
482
+ - `adam_beta2`: 0.999
483
+ - `adam_epsilon`: 1e-08
484
+ - `max_grad_norm`: 1.0
485
+ - `num_train_epochs`: 1
486
+ - `max_steps`: -1
487
+ - `lr_scheduler_type`: linear
488
+ - `lr_scheduler_kwargs`: {}
489
+ - `warmup_ratio`: 0.0
490
+ - `warmup_steps`: 0
491
+ - `log_level`: passive
492
+ - `log_level_replica`: warning
493
+ - `log_on_each_node`: True
494
+ - `logging_nan_inf_filter`: True
495
+ - `save_safetensors`: True
496
+ - `save_on_each_node`: False
497
+ - `save_only_model`: False
498
+ - `restore_callback_states_from_checkpoint`: False
499
+ - `no_cuda`: False
500
+ - `use_cpu`: False
501
+ - `use_mps_device`: False
502
+ - `seed`: 42
503
+ - `data_seed`: None
504
+ - `jit_mode_eval`: False
505
+ - `use_ipex`: False
506
+ - `bf16`: False
507
+ - `fp16`: False
508
+ - `fp16_opt_level`: O1
509
+ - `half_precision_backend`: auto
510
+ - `bf16_full_eval`: False
511
+ - `fp16_full_eval`: False
512
+ - `tf32`: None
513
+ - `local_rank`: 0
514
+ - `ddp_backend`: None
515
+ - `tpu_num_cores`: None
516
+ - `tpu_metrics_debug`: False
517
+ - `debug`: []
518
+ - `dataloader_drop_last`: False
519
+ - `dataloader_num_workers`: 0
520
+ - `dataloader_prefetch_factor`: None
521
+ - `past_index`: -1
522
+ - `disable_tqdm`: False
523
+ - `remove_unused_columns`: True
524
+ - `label_names`: None
525
+ - `load_best_model_at_end`: False
526
+ - `ignore_data_skip`: False
527
+ - `fsdp`: []
528
+ - `fsdp_min_num_params`: 0
529
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
530
+ - `fsdp_transformer_layer_cls_to_wrap`: None
531
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
532
+ - `deepspeed`: None
533
+ - `label_smoothing_factor`: 0.0
534
+ - `optim`: adamw_torch
535
+ - `optim_args`: None
536
+ - `adafactor`: False
537
+ - `group_by_length`: False
538
+ - `length_column_name`: length
539
+ - `ddp_find_unused_parameters`: None
540
+ - `ddp_bucket_cap_mb`: None
541
+ - `ddp_broadcast_buffers`: False
542
+ - `dataloader_pin_memory`: True
543
+ - `dataloader_persistent_workers`: False
544
+ - `skip_memory_metrics`: True
545
+ - `use_legacy_prediction_loop`: False
546
+ - `push_to_hub`: False
547
+ - `resume_from_checkpoint`: None
548
+ - `hub_model_id`: None
549
+ - `hub_strategy`: every_save
550
+ - `hub_private_repo`: False
551
+ - `hub_always_push`: False
552
+ - `gradient_checkpointing`: False
553
+ - `gradient_checkpointing_kwargs`: None
554
+ - `include_inputs_for_metrics`: False
555
+ - `eval_do_concat_batches`: True
556
+ - `fp16_backend`: auto
557
+ - `push_to_hub_model_id`: None
558
+ - `push_to_hub_organization`: None
559
+ - `mp_parameters`:
560
+ - `auto_find_batch_size`: False
561
+ - `full_determinism`: False
562
+ - `torchdynamo`: None
563
+ - `ray_scope`: last
564
+ - `ddp_timeout`: 1800
565
+ - `torch_compile`: False
566
+ - `torch_compile_backend`: None
567
+ - `torch_compile_mode`: None
568
+ - `dispatch_batches`: None
569
+ - `split_batches`: None
570
+ - `include_tokens_per_second`: False
571
+ - `include_num_input_tokens_seen`: False
572
+ - `neftune_noise_alpha`: None
573
+ - `optim_target_modules`: None
574
+ - `batch_eval_metrics`: False
575
+ - `eval_on_start`: False
576
+ - `eval_use_gather_object`: False
577
+ - `batch_sampler`: batch_sampler
578
+ - `multi_dataset_batch_sampler`: proportional
579
+
580
+ </details>
581
+
582
+ ### Training Logs
583
+ <details><summary>Click to expand</summary>
584
+
585
+ | Epoch | Step | Training Loss | loss | med-eval-dev_cosine_map@100 |
586
+ |:------:|:----:|:-------------:|:------:|:---------------------------:|
587
+ | 0 | 0 | - | - | 0.3328 |
588
+ | 0.0103 | 100 | 0.7953 | - | - |
589
+ | 0.0206 | 200 | 0.5536 | - | - |
590
+ | 0.0257 | 250 | - | 0.1041 | 0.7474 |
591
+ | 0.0309 | 300 | 0.4755 | - | - |
592
+ | 0.0411 | 400 | 0.4464 | - | - |
593
+ | 0.0514 | 500 | 0.3986 | 0.0761 | 0.7786 |
594
+ | 0.0617 | 600 | 0.357 | - | - |
595
+ | 0.0720 | 700 | 0.3519 | - | - |
596
+ | 0.0771 | 750 | - | 0.0685 | 0.8029 |
597
+ | 0.0823 | 800 | 0.3197 | - | - |
598
+ | 0.0926 | 900 | 0.3247 | - | - |
599
+ | 0.1028 | 1000 | 0.3048 | 0.0549 | 0.8108 |
600
+ | 0.1131 | 1100 | 0.2904 | - | - |
601
+ | 0.1234 | 1200 | 0.281 | - | - |
602
+ | 0.1285 | 1250 | - | 0.0503 | 0.8181 |
603
+ | 0.1337 | 1300 | 0.2673 | - | - |
604
+ | 0.1440 | 1400 | 0.2645 | - | - |
605
+ | 0.1543 | 1500 | 0.2511 | 0.0457 | 0.8332 |
606
+ | 0.1645 | 1600 | 0.2541 | - | - |
607
+ | 0.1748 | 1700 | 0.2614 | - | - |
608
+ | 0.1800 | 1750 | - | 0.0401 | 0.8380 |
609
+ | 0.1851 | 1800 | 0.2263 | - | - |
610
+ | 0.1954 | 1900 | 0.2466 | - | - |
611
+ | 0.2057 | 2000 | 0.2297 | 0.0365 | 0.8421 |
612
+ | 0.2160 | 2100 | 0.2225 | - | - |
613
+ | 0.2262 | 2200 | 0.212 | - | - |
614
+ | 0.2314 | 2250 | - | 0.0344 | 0.8563 |
615
+ | 0.2365 | 2300 | 0.2257 | - | - |
616
+ | 0.2468 | 2400 | 0.1953 | - | - |
617
+ | 0.2571 | 2500 | 0.1961 | 0.0348 | 0.8578 |
618
+ | 0.2674 | 2600 | 0.1888 | - | - |
619
+ | 0.2777 | 2700 | 0.2039 | - | - |
620
+ | 0.2828 | 2750 | - | 0.0319 | 0.8610 |
621
+ | 0.2879 | 2800 | 0.1939 | - | - |
622
+ | 0.2982 | 2900 | 0.202 | - | - |
623
+ | 0.3085 | 3000 | 0.1915 | 0.0292 | 0.8678 |
624
+ | 0.3188 | 3100 | 0.1987 | - | - |
625
+ | 0.3291 | 3200 | 0.1877 | - | - |
626
+ | 0.3342 | 3250 | - | 0.0275 | 0.8701 |
627
+ | 0.3394 | 3300 | 0.1874 | - | - |
628
+ | 0.3497 | 3400 | 0.1689 | - | - |
629
+ | 0.3599 | 3500 | 0.169 | 0.0281 | 0.8789 |
630
+ | 0.3702 | 3600 | 0.1631 | - | - |
631
+ | 0.3805 | 3700 | 0.1611 | - | - |
632
+ | 0.3856 | 3750 | - | 0.0263 | 0.8814 |
633
+ | 0.3908 | 3800 | 0.1764 | - | - |
634
+ | 0.4011 | 3900 | 0.1796 | - | - |
635
+ | 0.4114 | 4000 | 0.1729 | 0.0249 | 0.8805 |
636
+ | 0.4216 | 4100 | 0.1551 | - | - |
637
+ | 0.4319 | 4200 | 0.1543 | - | - |
638
+ | 0.4371 | 4250 | - | 0.0241 | 0.8867 |
639
+ | 0.4422 | 4300 | 0.1549 | - | - |
640
+ | 0.4525 | 4400 | 0.1432 | - | - |
641
+ | 0.4628 | 4500 | 0.1592 | 0.0219 | 0.8835 |
642
+ | 0.4731 | 4600 | 0.1517 | - | - |
643
+ | 0.4833 | 4700 | 0.1463 | - | - |
644
+ | 0.4885 | 4750 | - | 0.0228 | 0.8928 |
645
+ | 0.4936 | 4800 | 0.1525 | - | - |
646
+ | 0.5039 | 4900 | 0.1426 | - | - |
647
+ | 0.5142 | 5000 | 0.1524 | 0.0209 | 0.8903 |
648
+ | 0.5245 | 5100 | 0.1443 | - | - |
649
+ | 0.5348 | 5200 | 0.1468 | - | - |
650
+ | 0.5399 | 5250 | - | 0.0212 | 0.8948 |
651
+ | 0.5450 | 5300 | 0.151 | - | - |
652
+ | 0.5553 | 5400 | 0.1443 | - | - |
653
+ | 0.5656 | 5500 | 0.1438 | 0.0212 | 0.8982 |
654
+ | 0.5759 | 5600 | 0.1409 | - | - |
655
+ | 0.5862 | 5700 | 0.1346 | - | - |
656
+ | 0.5913 | 5750 | - | 0.0207 | 0.8983 |
657
+ | 0.5965 | 5800 | 0.1315 | - | - |
658
+ | 0.6067 | 5900 | 0.1425 | - | - |
659
+ | 0.6170 | 6000 | 0.136 | 0.0188 | 0.8970 |
660
+ | 0.6273 | 6100 | 0.1426 | - | - |
661
+ | 0.6376 | 6200 | 0.1353 | - | - |
662
+ | 0.6427 | 6250 | - | 0.0185 | 0.8969 |
663
+ | 0.6479 | 6300 | 0.1269 | - | - |
664
+ | 0.6582 | 6400 | 0.1159 | - | - |
665
+ | 0.6684 | 6500 | 0.1311 | 0.0184 | 0.9028 |
666
+ | 0.6787 | 6600 | 0.1179 | - | - |
667
+ | 0.6890 | 6700 | 0.115 | - | - |
668
+ | 0.6942 | 6750 | - | 0.0184 | 0.9046 |
669
+ | 0.6993 | 6800 | 0.1254 | - | - |
670
+ | 0.7096 | 6900 | 0.1233 | - | - |
671
+ | 0.7199 | 7000 | 0.122 | 0.0174 | 0.9042 |
672
+ | 0.7302 | 7100 | 0.1238 | - | - |
673
+ | 0.7404 | 7200 | 0.1257 | - | - |
674
+ | 0.7456 | 7250 | - | 0.0175 | 0.9074 |
675
+ | 0.7507 | 7300 | 0.1222 | - | - |
676
+ | 0.7610 | 7400 | 0.1194 | - | - |
677
+ | 0.7713 | 7500 | 0.1284 | 0.0166 | 0.9080 |
678
+ | 0.7816 | 7600 | 0.1147 | - | - |
679
+ | 0.7919 | 7700 | 0.1182 | - | - |
680
+ | 0.7970 | 7750 | - | 0.0170 | 0.9116 |
681
+ | 0.8021 | 7800 | 0.1157 | - | - |
682
+ | 0.8124 | 7900 | 0.1299 | - | - |
683
+ | 0.8227 | 8000 | 0.114 | 0.0163 | 0.9105 |
684
+ | 0.8330 | 8100 | 0.1141 | - | - |
685
+ | 0.8433 | 8200 | 0.1195 | - | - |
686
+ | 0.8484 | 8250 | - | 0.0160 | 0.9112 |
687
+ | 0.8536 | 8300 | 0.1073 | - | - |
688
+ | 0.8638 | 8400 | 0.1044 | - | - |
689
+ | 0.8741 | 8500 | 0.1083 | 0.0160 | 0.9153 |
690
+ | 0.8844 | 8600 | 0.1103 | - | - |
691
+ | 0.8947 | 8700 | 0.1145 | - | - |
692
+ | 0.8998 | 8750 | - | 0.0154 | 0.9133 |
693
+ | 0.9050 | 8800 | 0.1083 | - | - |
694
+ | 0.9153 | 8900 | 0.1205 | - | - |
695
+ | 0.9255 | 9000 | 0.1124 | 0.0153 | 0.9162 |
696
+ | 0.9358 | 9100 | 0.1067 | - | - |
697
+ | 0.9461 | 9200 | 0.116 | - | - |
698
+ | 0.9513 | 9250 | - | 0.0152 | 0.9171 |
699
+ | 0.9564 | 9300 | 0.1126 | - | - |
700
+ | 0.9667 | 9400 | 0.1075 | - | - |
701
+ | 0.9770 | 9500 | 0.1128 | 0.0149 | 0.9169 |
702
+ | 0.9872 | 9600 | 0.1143 | - | - |
703
+ | 0.9975 | 9700 | 0.1175 | - | - |
704
+
705
+ </details>
706
+
707
+ ### Framework Versions
708
+ - Python: 3.10.14
709
+ - Sentence Transformers: 3.1.1
710
+ - Transformers: 4.44.2
711
+ - PyTorch: 2.4.0
712
+ - Accelerate: 0.34.2
713
+ - Datasets: 3.0.0
714
+ - Tokenizers: 0.19.1
715
+
716
+ ## Citation
717
+
718
+ ### BibTeX
719
+
720
+ #### Sentence Transformers
721
+ ```bibtex
722
+ @inproceedings{reimers-2019-sentence-bert,
723
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
724
+ author = "Reimers, Nils and Gurevych, Iryna",
725
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
726
+ month = "11",
727
+ year = "2019",
728
+ publisher = "Association for Computational Linguistics",
729
+ url = "https://arxiv.org/abs/1908.10084",
730
+ }
731
+ ```
732
+
733
+ #### MultipleNegativesRankingLoss
734
+ ```bibtex
735
+ @misc{henderson2017efficient,
736
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
737
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
738
+ year={2017},
739
+ eprint={1705.00652},
740
+ archivePrefix={arXiv},
741
+ primaryClass={cs.CL}
742
+ }
743
+ ```
744
+
745
+ <!--
746
+ ## Glossary
747
+
748
+ *Clearly define terms in order to be accessible across audiences.*
749
+ -->
750
+
751
+ <!--
752
+ ## Model Card Authors
753
+
754
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
755
+ -->
756
+
757
+ <!--
758
+ ## Model Card Contact
759
+
760
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
761
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/stsb-distilbert-base",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cf906c3686b9be7a021a53a48bab369b62819103f3d95704d8291ad5dae0b2b
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "DistilBertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff