File size: 8,183 Bytes
7b361da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f877eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b361da
 
 
 
 
 
 
0f877eb
7b361da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# -*- coding:utf-8 -*-
import os
import logging
import gradio as gr
import gc
from interface.hddr_llama_onnx_interface import LlamaOnnxInterface
from interface.empty_stub_interface import EmptyStubInterface
from ChatApp.app_modules.utils import (
    reset_textbox,
    transfer_input,
    reset_state,
    delete_last_conversation,
    cancel_outputing,
)
from ChatApp.app_modules.presets import (
    small_and_beautiful_theme,
    title,
    description_top,
    description,
)
from ChatApp.app_modules.overwrites import postprocess

logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
)

# we can filter this dictionary at the start according to the actual available files on disk
empty_stub_model_name = "_Empty Stub_"

top_directory = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))

tokenizer_path = os.path.join(top_directory, "tokenizer.model")

available_models = {
    "Llama-2 Chat 13B Float16": {
        "onnx_file": os.path.join(
            top_directory, "FP16-Chat", "LlamaV2_13B_FT_float32.onnx"
        ),
        "tokenizer_path": tokenizer_path,
        "embedding_file": os.path.join(top_directory, "embeddings-chat.pth"),
    },
    "Llama-2 Chat 13B Float32": {
        "onnx_file": os.path.join(
            top_directory, "FP32-Chat", "LlamaV2_13B_FT_float32.onnx"
        ),
        "tokenizer_path": tokenizer_path,
        "embedding_file": os.path.join(
            top_directory, "embeddings-chat.pth"
        ),
    },
    "Llama-2 13B Float16": {
        "onnx_file": os.path.join(
            top_directory, "FP16", "LlamaV2_13B_float16.onnx"
        ),
        "tokenizer_path": tokenizer_path,
        "embedding_file": os.path.join(top_directory, "embeddings.pth"),
    },
    "Llama-2 13B Float32": {
        "onnx_file": os.path.join(
            top_directory, "FP32", "LlamaV2_13B_float16.onnx"
        ),
        "tokenizer_path": tokenizer_path,
        "embedding_file": os.path.join(
            top_directory, "embeddings.pth"
        ),
    },
}


interface = EmptyStubInterface()
interface.initialize()

# interface = None

gr.Chatbot.postprocess = postprocess

with open("ChatApp/assets/custom.css", "r", encoding="utf-8") as f:
    custom_css = f.read()


def change_model_listener(new_model_name):
    if new_model_name is None:
        new_model_name = empty_stub_model_name

    global interface

    # if a model exists - shut it down before trying to create the new one
    if interface is not None:
        interface.shutdown()
        del interface
        gc.collect()

    logging.info(f"Creating a new model [{new_model_name}]")
    if new_model_name == empty_stub_model_name:
        interface = EmptyStubInterface()
        interface.initialize()
    else:
        d = available_models[new_model_name]
        interface = LlamaOnnxInterface(
            onnx_file=d["onnx_file"],
            tokenizer_path=d["tokenizer_path"],
            embedding_file=d["embedding_file"],
        )
        interface.initialize()

    return new_model_name


def interface_predict(*args):
    global interface
    res = interface.predict(*args)

    for x in res:
        yield x


def interface_retry(*args):
    global interface
    res = interface.retry(*args)

    for x in res:
        yield x


with gr.Blocks(css=custom_css, theme=small_and_beautiful_theme) as demo:
    history = gr.State([])
    user_question = gr.State("")
    with gr.Row():
        gr.HTML(title)
        status_display = gr.Markdown("Success", elem_id="status_display")
    gr.Markdown(description_top)

    with gr.Row():
        with gr.Column(scale=5):
            with gr.Row():
                chatbot = gr.Chatbot(elem_id="chuanhu_chatbot", height=900)
            with gr.Row():
                with gr.Column(scale=12):
                    user_input = gr.Textbox(show_label=False, placeholder="Enter text")
                with gr.Column(min_width=70, scale=1):
                    submit_button = gr.Button("Send")
                with gr.Column(min_width=70, scale=1):
                    cancel_button = gr.Button("Stop")
            with gr.Row():
                empty_button = gr.Button(
                    "🧹 New Conversation",
                )
                retry_button = gr.Button("🔄 Regenerate")
                delete_last_button = gr.Button("🗑️ Remove Last Turn")
        with gr.Column():
            with gr.Column(min_width=50, scale=1):
                with gr.Tab(label="Parameter Setting"):
                    gr.Markdown("# Model")
                    model_name = gr.Dropdown(
                        choices=[empty_stub_model_name] + list(available_models.keys()),
                        label="Model",
                        show_label=False,  # default="Empty STUB",
                    )
                    model_name.change(
                        change_model_listener, inputs=[model_name], outputs=[model_name]
                    )

                    gr.Markdown("# Parameters")
                    top_p = gr.Slider(
                        minimum=-0,
                        maximum=1.0,
                        value=0.9,
                        step=0.05,
                        interactive=True,
                        label="Top-p",
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=0.75,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    max_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=512,
                        value=256,
                        step=8,
                        interactive=True,
                        label="Max Generation Tokens",
                    )
                    max_context_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=2048,
                        step=128,
                        interactive=True,
                        label="Max History Tokens",
                    )
    gr.Markdown(description)

    predict_args = dict(
        # fn=interface.predict,
        fn=interface_predict,
        inputs=[
            user_question,
            chatbot,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )
    retry_args = dict(
        fn=interface_retry,
        inputs=[
            user_input,
            chatbot,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )

    reset_args = dict(fn=reset_textbox, inputs=[], outputs=[user_input, status_display])

    # Chatbot
    transfer_input_args = dict(
        fn=transfer_input,
        inputs=[user_input],
        outputs=[user_question, user_input, submit_button],
        show_progress=True,
    )

    predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args)

    predict_event2 = submit_button.click(**transfer_input_args).then(**predict_args)

    empty_button.click(
        reset_state,
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )
    empty_button.click(**reset_args)

    predict_event3 = retry_button.click(**retry_args)

    delete_last_button.click(
        delete_last_conversation,
        [chatbot, history],
        [chatbot, history, status_display],
        show_progress=True,
    )
    cancel_button.click(
        cancel_outputing,
        [],
        [status_display],
        cancels=[predict_event1, predict_event2, predict_event3],
    )

    demo.load(change_model_listener, inputs=None, outputs=model_name)

demo.title = "Llama-2 Chat UI"

demo.queue(concurrency_count=1).launch()